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Let X, Y= B* and 1let
(1) PR — Rr
C:XxY - g
be two applications.

Definition 1. 4 point 2% in @ subsel I of B" is called a Pareto mini-
mum point for the function I on D if there is no pe D such thai

(2) F(@) < F(av)

The point 20 is called Pareto maximum potat for I' on D if there
s n0 e D such (hat

(3) (@) > F(a9)

The set of all Pareto minimum points for 7 on D is denoted by
mP(F/D) and that of all mazimum Pareto points by MP(F/D).

In Definition 1 the order < in R? jg understood in the sense that :
ey iff @ <y, i= 1,...,p, and @EYMOr | L (pgsuaal] @p) and g =
= (#1,. .., 9,) in R?. The relation <y means that T <y lori=1,., P
and x < y means that i Yy for i =1, o P

In the following the domain D will be defined by some inequality
restrictions, i.e.

(4) D= {ze R“:G(m)§0}
where
(5) G : R1L . Rﬂl'

Definition 2. 4 pont (a% 4% e X x YV g called @ Pareto sqddle point
Jor @ if there is no point we X such that

(6)._ (I)(w7 Y9 < (I)(m07 .7/0)
and there is no point y€ Y such that
(7) (%, 5°) < (v, )
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: TR ARSI TR SA(O; X % Y)
L : points for @ is denoted by b, e
?llf S(;t gfeg’go]?naileltm(% EEﬁliéﬂ((i(}'%_ionition differs from the definition given
J60 US 1 @
: pigusin in [1). 7 S
0y 1[ A point (2% 9% € X X Y is a Pareto saddle povnt for
THEOREM 1. b, ) S .
® if and only if the following conditions hold :
1) ave mP(O(., y°)/X) and
2) y°e MP(D(2%.)/Y)

TRy - 5.
Proof. Follows by Definitions 1 and

Put g |
(§) mo={(x,y)e XX Y :pemP (B[ A}, and
yEY )
7] IxY: D(,.)[Y)).
0= z,y)e A x Y :ge mP(O(x,
7= {o )

I l l) ‘1- g f ] —l 3 l); elo
H [ in 1 i ¥ l i l) ‘) N consists 1 1(1 o t g rare
i (0] SUs 1 11 m ( 1 1

i i she set mP(D ).
minimwm points of the function ® on M, i.e. of the se¢ (

i in finding t areto maxi-
T'he dual problem (problem (D)ﬁ)_»cqnsxst\; ﬁ?eﬁ;é?{%ﬁ)t(%e/g )L.lL
j »oints of the function ® on m, i.e. o et MR By ok
e 11)()1?1112 (()hmlii‘v theorems proved bellow we shall use the fo g
n g - Al )L ] .
condition : Wiy b o e
Condition (4). We say that on the points (at, Y and (22, )
JONULELON . > e P
X x Y is satisfied condition (A) if .
(9) D2, yh) € O(a?, y?) or Oy y) S (% ¥7)
" | He m z2, y2e M, where m, DB are
d a2, Let (2, ye mo and (27, y7°) ¢ L, iy
lef1 rllEI[)EO(I%A]I‘H.t7ze]5£715?:)tioi{ _)A is satisfied on these poinis then the o
defined by (8). If th
(a2, 9% < Oty yh)
does ot hold.

Proof. From (a',y')e m it follows

{10) D2, yt) £ Ot yh)

and from (a?, y?)e M it follows

(11) (a2, y?) & Pla? yh
Supposce that

(12) (a2, ) < W(ay ")

= g ints Y where
3¢ ) 1 iy the set of all points ye ST
Write ¥ = Ylu Y3 'thle 12’1 ib Lrlii,d&.e;z 0 e e
G(x?, y) 18 comparable with D(x?, y') a Y2 = Y hen
.

) Y
(13) O(a, yh) < Dl )

i whradiction with
by (12) and (13), ®(2% y') < d(x!, yY) in contradiction
But, by (12) and )y @ 1
(10). The;‘efore y2e Y2, so that

(14) ®(a?, y2) 3 O(a% y1),
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Similarly, the set X can be written as U — y1y A2, where X1 g
the set of all e U such that O(z, y1) is comparable with ®(z2, y1) and,
A2 = XN If 2'e X! then -

(15) (D(ml; .7/1) S d)(wga .’]/1)

and, by (12), it follows O(a?, y2) < (a2, 4), in contradiction with (11).
Therefore y!e A2 g0 that !

(16) B2, y1) =5 D(a2, 41),
But, relations (14) and (16) contradict condition (A).
Remark 1. 1 ®: X x ¥V s R (i.e.
with one objectiv

well know:

in the case of the optimization:
function) then Condition (A

) iy fulfilled and one obtaing
n duality theorems (see, e.g. [4]).
In Theorem 7 bellow we shall give an important
tion (A) holds for every pair of points (2!, yY) m oand
From Theorem 2 one obtaing

THEOREM 3. If condition (4) holds then

D22, y2) ¢ d(2!, 41

for all (o' y1) e MP(O/m) and all
Theorem 1 gets

case when condi-
(v, 942 e M.

(@ 3%) e mP(O/M).

Lmavra 1. (a0, y%) e SA(D/X x YY) if and only if (a0, ¥ e Mnm.
We need also the following well-known lemma, -

LEMMA 2. If g0¢ MP(F/A(2°) then 29¢ MP(F|D), where

A(a?) = fre'p () S F(29)}
Now, we can prove :

- TurEOREM 4. If (a9, ¥9)

ESA(P/Y XY
for every pair of points (aty ot X2

and codntition (A) holds
)€ m and (i

s ¥2) e M, then
(#% ¥°) e mP(®) ) n MP(D/m)
Proof. By Lemma 1, (2% y%e M nm. Suppose  that (29 °) ¢
¢ mP(®/M). Then there exists (22, y2)e M such that P2, y2) < D(a0, %),
in contradiction with Theorem 2. If (a9, ¥°) € MP(D/m), then there exists
(@', y') € m, such bhat, ®(a% %) < d(al, ')y contradicting again Theorem 2.
TuworEM 5. If (2, y') e m, (v y?)e M and
Bz, ) = Dla2, g2) — d(a2, 1)
then (2%, y') e SA(D)X x Y.
Proof. Suppose that (@2, y*) ¢SA(PLY x ¥ )y 1e

(2% y' ¢ mn M, which
implies that (a2, ¥') ¢ m or (a2 yly ¢ M. In the first case, there exists
z € X, sueh that

(@, y) < O(a?, ) = D(at, g
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so that (2%, y) ¢ m, which is a contradiction. In the second case, i.e. if
(22, y*) ¢ M, there exists y € Y such that
(a2, y?) = dla? yh) < Dla~, )
that is (2%, y2) ¢ M, which is absurd.
Consider now a particular case. Lot

(17) X =R",Y ={ye R":yz0} = %
G: R" — k™, and
(18) B B x R — Rey O = (Dyy..., Py) be givenr by

@2, y) = Fu(@) + y"G(x)
We will show that in this case condition (4) holds for cvery pair of
points (%, ytye m and (2% y*) € M.
But, let us prove before :
Turore 6. We have M = Q, where Q is defined by
Q= {{a,)e AX Y y" &) =0 and G(x)<0}, ye RY.

Proof. Suppose that there exists a point (2%, y?) € N Q. Then

(i) there exists j such that Gy(x%) >0, or

(i1) 4" ») #0 and G(x)s0

In the first case, there exists ;> 5. Taking Y= rUire s Ym)
one obtaing ®(x% ) > ®(a* ¥%) contradicting the fact that (x* y*) € M.
Tn the second ease, if G(a?) <0, and 2" G(x*) #0, it follows that #*"G{@*) <
< 0. Putting y = (0,...,0) one obfains O(a?, y2) < O(a? y), in contra-
diction with (x% »*) e M. .

Suppose now that («* y*) € O and (22, y?)¢ M. Then there exists
ge Y such that ®(z? y*) < d(a*, §), which means that 0 = Gty <
< y7G{a?*), which is im possible, since y"G(#7) is a sum of negative numbers.

TuroreM 7. Let X, Y and ®, be given by (15) and (16), respecti-
vely. Then condition (A) holds for every pair of points (2, y)e XX Y
and (12, y2)e M = Q.

Proof. For («?, y*) € L it follows G(x?) <0 and y**G(x?) = 0, 80 that
y'TG(5%) Ly G(a®), for all yte R Bub then

O( 22, yt) < Da?, y?)-
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