MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 15, N° 1, 1986, pp. 41-48 (i) = (i) to the component that a treatment is negligible to the continue of (i) = (i)

SOME PARTICULAR CASES OF DUAL PROBLEMS IN PARETO OPTIMIZATION

PAUL IACOB (Braşov)

This paper is concerned with the problem of finding the set of all Pareto minimum points of a function $F: \mathbb{R}^n \to \mathbb{R}^p$ defined on a domain D

$$D = \{x \in \mathbb{R}^n : G(x) \le 0\}$$

where

$$(2) G: R \to R^m.$$

The relation $x \leq y$ between two elements $x = (x_1, \ldots, x_m)$, $y = (y_1, \ldots, y_m)$ in R^m means that $x_i \leq y_i$ for $i = 1, \ldots, m$ and $x \leq y$ means that $x_i \leq y_i$, $i = 1, \ldots, m$ and $x \neq y$.

In the following we shall suppose that the components of the functions F and G, F_i , $i = 1, \ldots, p$, and G_i , $i = 1, \ldots, m$, are convex functions on R^n . It follows that the domain D defined by (1) is convex. Denote by mP(F/D) and by MP(F/D) the set of all Pareto minimum points of F on O Divise to add one additionally successful rolling market of the

(3)
$$\mathrm{mP}(F/D) = \{x \in D : \exists y \in D, F(y) \leqslant F(x)\},\$$

and, respectively, the set of all Pareto maximum points of F on D, i.e.

(4)
$$MP(F/D) = \{x \in D : \overline{\exists} y \in D, F(x) \leqslant F(y) \}$$
 Put also

$$M = \{i_1, i_2, \ldots, i_s\} \subset \{1, 2, \ldots, p\}$$

$$(6) \hspace{1cm} N=\{1,2,\ldots,p\} \diagdown M$$

(7)
$$\varphi = (\varphi_i, \ldots, \varphi_s), \text{ where } \varphi_j = F_{i_j} \text{ for } i_j \in M, \text{ and }$$

(8)
$$D(x^0) = \{x \in D : F_i(x) \leq F_i(x^0), i \in N\}, \text{ for } x^0 \in D.$$
Now, we can prove:

Theorem 1. The following assertion:

Theorem 1. The following assertions are equivalent

(i) $x^0 \in \mathbf{mP}(\mathbf{F}/\mathbf{D})$

(i) $x^0 \in \operatorname{mP}(\mathbf{F}/\mathbf{D})$ (ii) For every non-void subset M of $\{1, 2, \ldots, p\}$ it follows that $x^0 \in \operatorname{mP}(\varphi)$ $D(x^0)$, where φ and $D(x^0)$ are defined, respectively, by (7) and (8).

Proof. $(ii)\Rightarrow(i)$. Follows immediately putting $M=\{1,\ldots,p\}$. In this case $N = \emptyset$ and $D(x^0) = D$.

 $(i) \Rightarrow (ii)$. Suppose that there exist a non-void subset M of $\{1, \ldots, p\}$ and $x^0 \in \mathrm{mP}(F/D) \setminus \mathrm{mP}(\phi/D(x^0))$. Then there exist $x^1 \in D(x^0)$ such that $F_i(x^1) \leq F_i(x^0)$, for all $i \in M$, and there exists $i_0 \in M$ such that $F_{i_0}(x^1) < i_0$ $\langle F_{i_0}(x^0)\rangle$. But x^1 is in $D(x^0)$, i.e. $F_{i_0}(x^1) \leqslant F_{i_0}(x^0)$ for all $i \in N$, so that $F_i(x^i) \leq F_i(x^0)$ for all $i \in \{1, \ldots, p\}$ and $F_{i_0}(x^1) < F_{i_0}(x^0)$, which means that $F(x^1) \leq F(x^0)$, implying $x^0 \notin \mathrm{mP}(F/D)$, in contradiction with the choice of x^0 . NO ESPECIAL DESCRIPTION OF STREETING

We say that the system

(9)
$$\begin{cases} G(x) \leq 0 \\ F(x) \leq F(x^0) \end{cases}$$

verifies condition A in x^0 if there exists $i_0 \in \{1, \ldots, p\}$ such that the systems

(10)
$$\begin{cases} G(x) \leq 0 \\ F_{i}(x) \leq F_{i}(x^{0}), i \in \{1, \dots, p\} \setminus \{i_{0}\} \end{cases}$$

and

(11)
$$\begin{cases} G(x) \leq 0 \\ F_{i_0}(x) \leq F_{i_0}(x^0) \end{cases}$$

satisfy condition B defined bellow.

A system $G(x) \leq 0$ verifies condition B iff there exists $\overline{x} \in \mathbb{R}^n$ such that $G_i(\overline{x}) < 0$ for those $i \in \{1, \ldots, m\}$ for Which G_i is nonlinear and $G_i(\overline{x}) \leq$ ≤ 0 if G_i is affine (see Dragomirescu-Malita [2], condition 21' on page 162). Condition B is a regularity condition of Slater type.

THEOREM 2. Let $F = (F_1, \ldots, F_p) : \mathbb{R}^p \to \mathbb{R}^p$ and $G = (G_1, \ldots, G_m) :$ $R^n \to R^m$ be two convex vector functions differentiable on the domain D defined by (1) and suppose that system (9) verifies condition A on a point $x^0 \in D$. Then $x^0 \in mP(F/D)$ if and only if there exist the multiplicators $\lambda \in \mathbb{R}^p, \ \lambda > 0 \quad and \quad \mu \in \mathbb{R}^m, \ \mu \geq 0 \quad such \quad that$

(12)
$$\begin{cases} \lambda^T \ \nabla F(x^0) + \mu^T \nabla G(x^0) = 0 \\ \mu^T G(x^0) = 0 \end{cases}$$

Proof. The sufficiency part of the theorem is known, see. i. Fuchs [4], Th. 6.3.

Necessity. The proof proceeds by induction on p.

For p=1 one obtains the well known Kuhn-Tucker theorem (see e.g. [3], p. 119).

Suppose now that the teorem is true for p = k - 1. Without loosing the generality we can suppose that condition A is satisfied in x^0 for $i_0 = k$. By Theorem 1 it follows that $x^0 \in \mathrm{mP}(\varphi/D(x^0))$, where

$$egin{aligned} arphi_i &= F_i, ext{ for } i \in M = \{1, \, \ldots, \, k-1\}, ext{ and } \ &D(x^0) = \{x \in D: F_k(x) \leqslant F_k(x^0)\}. \end{aligned}$$

Condition A being satisfied by the system (9) in x^0 it follows that it is satisfied in x^0 by the system addition and the national

$$\left\{egin{aligned} G(x) & \leq 0 \ F_i(x) & \leqslant F_i(x^0), \, i \in M. \end{aligned}
ight.$$

But, applying then Theorem 2 for the case p = k - 1, there exist

$$\lambda^{1} \in \mathbb{R}^{k-1}$$
, $\lambda > 0$ and $\mu^{1} \in \mathbb{R}^{m}$, $\mu^{1} \geq 0$, such that

(13)
$$\lambda^{1} \in R^{k-1}, \ \lambda > 0 \text{ and } \mu^{1} \in R^{m}, \ \mu^{1} \geq 0, \text{ such that}$$

$$\begin{cases} \sum_{i=1}^{k-1} \lambda_{i}^{1} \nabla F_{i}(x^{0}) + \mu^{1T} \nabla G(x^{0}) = 0, \text{ and} \\ \mu^{1T} G(x^{0}) = 0 \end{cases}$$
Applying now Theorem 1 if follows

Applying now Theorem 1 if follows

(14)
$$\min F_k(x) = F_k(x^0)$$
, for x in the set $\{x \in \mathbb{R}^n : G(x) \le 0, F_i(x) \le F_i(x^0), i \in M\}$ where $M = \{1, \dots, k-1\}$.

The restriction system

$$\begin{cases}
G(x) \leq 0 \\
F_i(x) \leq F_i(x^0), i \in M;
\end{cases}$$

verifies the hypotheses of Kuhn-Tucker theorem and therefore there exist $\lambda^2 \in \mathbb{R}^{k-1}$, $\lambda^2 \geq 0$, and $\mu^2 \in \mathbb{R}^m$, $\mu^2 \geq 0$, such that

(15)
$$\begin{cases} \sum_{i=1}^{k-1} \lambda_i^2 \ \nabla F_i(x^0) + \ \nabla F_k(x^0) + \mu^{2T} \ \nabla G(x^0) = 0, \text{ and} \\ \mu^{2T} \ G(x^0) = 0 \end{cases}$$

By adding (13) and (15) one obtains

(16)
$$\begin{cases} \lambda^T \ \nabla F(x^0) + \mu^T \ \nabla G(x^0) = 0 \\ \mu^T \ G(x^0) = 0 \end{cases}$$

where $\lambda_i = \lambda_i^1 + \lambda_i^2 > 0$, for $i \in M$, $\lambda_k = 1 > 0$, $\mu = \mu^1 + \mu^2 \ge 0$. The theorem is completely proved.

From this theorem one obtains a sufficient condition for a point to be a proper efficient point (for definition see [5]).

COROLLARY 1. If $F = (F_i)_{i=1, p}$ and $G = (G_j)_{j=1, p}$ and F_i , G_j are convex differentiable functions on the domain D defined by (1) and if system (9) satisfies condition A in x0, then x0 is a proper efficient point for F on D.

Proof. By Theorem 2 follows the existence of $\lambda \in \mathbb{R}^p$, $\lambda > 0$, such that in an interior and a state of the state of t

(17)
$$\min_{x \in D} \left(\sum_{i=1}^{p} \lambda_{i} F_{i}(x) \right) = \sum_{i=1}^{p} \lambda_{i} F_{i}(x^{0})$$

But this relation is a sufficient condition for x^0 to be a proper efficient point (see Geofrion [5]).

As was shown by Tuy [9] condition B is sufficient for the stability of systems (10) and (11). Benson and Morin [1] gave another sufficient condition for proper efficiency based also on the stability of a system o inequalities.

By using Theorem 2 we can prove that if F and G are affine then every efficient point is a proper efficient point, a well known property.

COROLLARY 2. If F_1 is strictly convex and differentiable on the domain D defined by (1) and F_i , $i=2,\ldots,p,G_i$, $i=1,\ldots,m$ are affine functions, then every Pareto minimum point x0 of F on D is a proper efficient point, excepting the point x^1 for which $F_1(x') = \min F_1(x)$.

Proof. One can see that system (9) verifies condition A in every point $x^0 \neq x^1$ and Corrollary 1 can by applied.

(18)
$$\begin{cases} \Phi : X \times Y \to R^{n} \\ X = R^{n}, Y = R^{m}_{+}, R^{m}_{+} = \{x \in R^{m} : x \geq 0\} \end{cases}$$

We say that (x^0, y^0) is a Pareto saddle point for Φ on $X \times Y$ if there are no points $x \in X$ and $y \in Y$ such that

$$\Phi(x, y^0) \leq \Phi(x^0, y^0) \text{ and } \Phi(x^0, y^0) \leq \Phi(x^0, y)$$

We shall denote this situation by writting $(x^0, y^0) \in SA(\Phi/X \times Y)$ Define now, as in [6], the sets

(19)
$$\overline{M} = \bigcup_{x \in X} \{(x, y) \in X \times Y : y \in MP(\Phi(x, .)/Y, \text{ and }$$

(20)
$$\overline{m} = \bigcup_{y \in Y} \{(x, y) \in X \times Y : x \in \mathrm{mP}(\Phi(., y)/X).$$

In the following the function Φ will be given by

(21)
$$\Phi_i(x, y) = F_i(x) + y^T G(x), i = 1, ..., p.$$

where

$$(22) X = R^n, Y = R^m_+$$

THEOREM 3. Let $\Phi = (\Phi_i)_{i=1, p}$ be given by (21). (i) If $(x^0, y^0) \in SA(\Phi/X \times Y)$ then there exists $\lambda \in \mathbb{R}^p$, $\lambda \geq 0$, such that (x^0, y^0) is a saddle point for the scalar function $\lambda^T \Phi$ on $X \times Y$.

(ii) If there exists $\lambda \in \mathbb{R}^p$, $\lambda > 0$, such that (x^0, y^0) is a saddle point for the scalar function $\lambda^T \Phi$, then $(x^0, y^0) \in SA(\Phi/X \times Y)$.

Proof. By Theorem 4 in [6], follows $x^0 \in \mathrm{mP}(F/D)$ and then, by Theorem 7.4.1. in [8], one obtains the desired conclusion.

(ii) Supposing $(x^0, y^0) \in SA(\Phi/X \times Y)$, one can arise two situations:

(ii) there exists $x \in X$ such that $\Phi(x, y^0) \leq \Phi(x^0, y^0)$ implying $\lambda^T \Phi(x, y^0) < \lambda^T \Phi(x^0, y^0)$, a contradiction, or

(ii₂) there exists $y \in Y$ such that $\Phi(x^0, y^0) \leq \Phi(x^0, y)$, implying $\lambda^T \Phi(x^0, y^0)$ y^0), again in contradiction with the hypotheses that (x^0, y^0) is a saddle point for $\lambda^T \Phi$ on $X \times Y$.

Theorem 4. Let $(x^0, y^0) \in \mathrm{mP}(\Phi/\overline{M})$ where \overline{M} is defined by (19) and Φ is defined by (21) and suppose that the functions F_i , $i=1,\ldots,p$, $G_i,\ i=1,\ldots,m$ are convex and differentiable on the domain D defined by (1). If (x^0, y^0) is a proper efficient point then there exists $\bar{y} \in \mathbb{R}_+^m$ such that $(x^0, y) \in MP(\Phi/\overline{m})$, where \overline{m} is defined by (20).

Proof. In [6] we have proved that

(23) Proof. In [6] we have proved that
$$\vec{M} = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^m_+; G(x) \leq 0, y^T G(x) = 0\}.$$

Therefore, if (x^0, y^0) is proper efficient then there exists $\lambda \in \mathbb{R}^p$, $\lambda > 0, \sum_{i=1}^{p} \lambda_{i} = 1$ such that

$$\min_{(x,y)\in\overline{M}}\lambda^T\Phi(x,y)=\lambda^T\Phi(x^0,y^0)$$

But, by (23) and the definition of Φ it follows that

(24)
$$\min_{x \in D} \lambda^T F(x) = \lambda^T F(x^0)$$

Taking into account Fritz-John necessary condition (see [3], p. 101) one can find $\bar{y} \in \mathbb{R}^m$, $\bar{y} \geq 0$, such that (x^0, \bar{y}) be a saddle point for the func-

$$\begin{cases} \lambda^T \; \Phi(x,y) = \; \lambda^T \, F(x) + y^T \, G(x) \; ext{on} \; R^n imes R_+^m \; ext{and} \ ar{y}^T \, G(x^0) = 0 \end{cases}$$

Therefore, by Theorem 3 (ii) it follows $(x^0, \overline{y}) \in SA(\Phi/X \times Y)$ and by [6] Theorem 4, (x^0, y) MP (Φ/\overline{m}) .

Define now the primal and dual Pareto optimum problems: The primal problem (P): Determine the set $mP(\Phi/\overline{M})$. The 5 dual problem (D): Determine the set $MP(\Phi/\overline{m})$.

Remark that Theorem 4 gives sufficient conditions in order that the existence of a solution of problem (P) imply the existence of a solution of problem (D).

Corollary 3. Suppose that F_1 is strictly convex and differentiable on the domain D defined by (1), F_i , $i=2,\ldots,p$ and G_i , $i=1,\ldots,m$ are affine functions, $x^0 \in \mathrm{mP}(F/D)$ and $x^0 \neq x^1$, where $\min F_1(x) = F_1(x^1)$. Then there exists $\bar{y} \in \mathbb{R}^m, \bar{y} \ge 0$ such that $(x^0, \bar{y}) \in MP(\bar{\Phi}/\bar{m})$.

Proof. Follows from the Corollary 2 and Theorem 4.

In order to obtain results concerning the reverse connection between problems (D) and (P) we shall study some particular cases in which we know the set \overline{m} . Accepted instantly and former to child the beauties are seen from any

THEOREM 5. Suppose that the following conditions hold: The transfer of the first terminal

(i) Φ is defined by (21);

(ii) \overline{m} is defined by (20);

(iii) F₁ is strictly convex and differentiable on the domain D defined by(1); and

(iv) F_i , $i = 2, \ldots, p$ and G_i , $i = 1, \ldots, m$ are affine functions. Then

$$\overline{m} = \left\{ (x, y) \in \mathbb{R}^n \times \mathbb{R}^m_+ : \sum_{i=1}^p \lambda_i \nabla_x F_i(x) + y^T \nabla_x G(x) = 0, \ \lambda_i > 0, \ \sum_{i=1}^p \lambda_i = 1 \right\}$$
(25)

Proof. Denote by ω the right member of equality (25). If $(\overline{x}, \overline{y}) \in \overline{m}$ then, by the definition of $\overline{m}, \overline{x} \in \mathrm{mP}(\Phi(\cdot, \overline{y})/R^n)$. By Theorem 1

$$\min_{x \in \Delta} \left(F_1(x) + \overline{y}^T G(x) \right) = F_1(\overline{x}) + y^T G(\overline{x}),$$

where Δ is the set of solutions of the following system of inequalities:

$$(26) F_i(x) + \overline{y}^T G(x) \leq F_i(\overline{x}) + \overline{y}^T G(\overline{x}), i = 2, \dots, p$$

The system (26) satisfies condition B so that, by Kuhn-Tucker theorem, follows the existence of a $\lambda \in \mathbb{R}^{p-1}$, $\lambda \geq 0$, such that

(27)
$$\nabla F_1(x) + y^T \nabla G(x) + \sum_{i=2}^{f} \lambda_i (\nabla F_i(x) + y^T \nabla G(x)) = 0$$
 Denoting

Denoting

$$\overline{\lambda}_1 = 1/\!\left(1 + \sum_{i=2}^p \lambda_i
ight) > 0, \; \overline{\lambda}_i = \lambda_i/\!\left(+ \sum_{i=2}^p \lambda_i
ight)\!, \; i=2,\ldots,p,$$

one obtains:

(28)
$$\sum_{i=1}^{p} \overline{\lambda}_{i} \nabla F_{i}(x) + y^{T} \nabla G(x) = 0, \sum_{i=1}^{p} \overline{\lambda}_{i} = 1, \overline{\lambda}_{1} > 0$$

so that $\overline{m} \subseteq \omega$.

In order to prove the reverse inclusion observe that for every $\lambda \in \mathbb{R}^p$, $\lambda \geqslant 0$, $\lambda_1 > 0$, by the strict convexity of F_1 , the set

$$\left\{(x,y)\in R^n imes R^p_+: \sum_{i=1}^p\,\lambda_i\,\,
abla F_i(x)\,+\,y^T\,\,
abla G(x)=0
ight\}$$

of the fill sweet Brooks wight part and marks with in the standing to is non-void. But then, the function $\sum_{i=1}^{r} \lambda_{i} F_{i}$ is also strictly conex, for $\lambda \geqslant 0, \ \lambda_1 > 0$. Therefore, all of the implications from the first part of the proof can be reversed, giving $\omega \subseteq \overline{m}$. The theorem is proved.

THEOREM 6. Suppose that the following conditions hold:

(i) $(\overline{x}, \overline{y}) \in MP(\Phi/\overline{M})$;

(ii) Φ is defined by (19);

(iii) F_1 is strictly convex and differentiable on the domain D defined by(1);

(iv) F_i , i = 2, ..., p, and G_i , i = 1, ..., m are affine functions;

(v) there exists $\lambda \in \mathbb{R}^p$, $\lambda > 0$, such that

(29)
$$\max_{(x, y) \in \overline{m}} \lambda^T \Phi(x, y) = \lambda^T \Phi(\overline{x}, \overline{y}).$$

Then there exists an element $(x^1, y^1) \in \mathbb{R}^n \times \mathbb{R}^p$, belonging to $\mathrm{mP}(\Phi/\overline{M})$. Proof. Put

(30)
$$m_{\lambda} = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^m_+: \lambda^T \nabla F(x) + y^T \nabla G(x) = 0$$

In the proof of Theorem 5 it was shown that $\lambda \ge 0$ and $\lambda_1 > 0$ implies $m_{\lambda} \neq \overline{\Phi}$ and $m_{\lambda} \subset \overline{m}$. Therefore there exists $(x^1, y^1) \in m_{\lambda}$ such that

$$\max_{(x, y) \in m_{\lambda}} \lambda^{T} \Phi(x, y) = \lambda^{T} \Phi(x^{1}, y^{1}).$$

By [3], p. 153, (iii₂) it follows

$$egin{cases} G(x^1) & \leq 0 \ y^{1?} \ G(x^1) = 0 \end{cases}$$

By [6], Theorem 6 it follows that $(x^1, y^1) \in \overline{M}$, so that $(x^1, y^1) \in \overline{M}$ $\in \overline{M} \cap \widetilde{m}$. But applying [6], Lema 1 one obtains $(x^1, y^1) \in SA(\Phi/R^n \times R^m_+)$ and so $(x^1, y^1) \in mP(\Phi/M)$ [6] Theorem 4.

Knowing the form of the sets \overline{m} and \overline{M} we can prove:

THEOREM 7. Suppose:

(i) Φ is defined by (19);

(ii) F₁ is strictly convex and differentiable on the domain D defined by (1);

(iii) F_i , $i=2,\ldots,p$, and G_i , $i=1,\ldots,m$ are affine functions. Then $x \in \mathrm{mP}(F/D)$ if and only if x is a solution of the multi-parameter convex programming problem (P₂) given by

(31)
$$\min_{x \in D} \left(F_1(x) + \sum_{i=2}^{p} \lambda_i F_i(x) \right), \ \lambda_i \geqslant 0, \ i = 2, \ldots, p.$$

Proof. By Corollary 3, if $\overline{x} \in \mathrm{mP}(F/D)$, and $\overline{x} \neq a^1$, where a^1 is given by

(32)
$$\min_{x \in D} F_1(x) = F_1(x^1).$$

then there exists \overline{y} such that

$$(\overline{x}, \overline{y}) \in SA(\Phi/\mathbb{R}^n \times \mathbb{R}^m_+),$$

so that $(x,y) \in \overline{m} \cap \overline{M}$. Therefore

(33)
$$\begin{cases} \sum_{i=1}^{p} \lambda_i \nabla F_i(x) + y^T \nabla G(x) = 0 \\ G(x) \leq 0 \\ y^T G(x) = 0 \end{cases}$$

One can see that the system (33) has x^1 as solution for $\lambda_i = 0$, $i=2,\ldots,p$. Consequently, if $\overline{x}\in \mathrm{mP}(F/D)$ then \overline{x} is a solution of (33) which means that it is also a solution of the problem (P_{λ}) . Now suppose that \overline{x} is solution of (33).

By Theorems 6 and 4 in [6], \overline{x} will be an element of the set $\mathrm{mP}(F/D)$.

The theorem is proved.

This theorem is important because it makes possible to find all points of the set $\mathrm{mP}(F/D)$ when F_1 is quadratic and positively defined and all of the other functions are affine.

REFERENCES

1. Benson, H. P., Morin, T. L., The vector maximum problem: proper efficiency and stability, S.I.A.M. Journal on Appl. Math. 32, 1 (1977), 64-72.

2. Dragomirescu, M., Malița, M., Programarea patratică, Editura științifică, București,

3. Dragomireseu, M., Malița, M., Programare neliniară, Ed. științifică, București, 1972.

4. Fuchs, W. D., Contribuții la studiul dualității în programarea malematică — Probleme de optim vectorial, Teză de doctorat Timișoara, 1980.

5. Geoffrion, A. M., Proper efficiency and the theory of vector maximization. Math. anal. and appl., 22(3) 1968, 618-630.

I a c o b, P., Teoreme de dualitate cu punct șa pentru optimizare Pareto. Seminarul intinerant de ccuații funcționale aproximare și convexitate, mai, Cluj-Napoca, 1981.

7. Karlin, S., Nonlinear programming, Addison-Werley Pub. Co., 1950.

8. Tuy, H., Stability property of a system of inequalities, Math. Operationsforschung Statist. Ser. Optimization, 8 (1977) No. 1, 27-39.

Received 10.V.1983 Universitatea din Brașov 2200 Braşov România