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This paper is concerned with the problem of finding the set of all
Pareto minimum points of a function F: p» R? defined on o domain 1)
given by

(1) D ={xe R": Ax) < 0}
where
(2) G: R — R™
The relation <y Detween two elements » = (x, ..., To)y Y =
= (Y15++ -y ¥m) I E™ means that e <y for i =1, ..., m and 2 <y

means that x, <y, i = 1,...,m and 2 # ¥

In the following we shall suppose that the components of the fune-
tions Fand G, I, i — 1,. . Py and Gy, i '=1,.. . m, are convex functions
on k" It follows that the domain D defined by (1) is convex. Denote by
mP(F/D) and by MP(F/D) the set of all Pareto minimvm points of F on
D, ie.

(3) mP(E/D) = {we D:3ye D, Fy) < Fla)},
and, respectively, the set of all Pareto maximum points of F on D, i.e,
(4) MP(F/D) = {ze D:3ye D, F(x) < F(y))
Put also
(5) Mz{il,iz,...,is}c{1,2,...,p}
(6) N=4{1,2...,p0\ ¥
(7) 9 = (g1, - - -y ), Where o, — ¥, for i,e M, and
(8) D% = {we D: Fyx) < Fya®),ic N}, for 2%¢ D.

Now, we can prove :
TuroreEM 1. The following assertions are equivalent
(1) x°e mP(F/D)

(it) For every non-void subset M of {1, 2,...,p} it follows that a®e mP(qf
[D(2°)), where ¢ and D(a°) are defined, respectively, by (7) and (8).
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Proof. (i1)=(1). Follows immediately putting M = {1,...,p}. In
this case N = @ and D(2f) = D.

() = (i1). Suppose that there exist a non-void subset M of {1,..., p}
and 2%e mP( DY\ mP(o/Xx%). Then there exist a'e D(20%) such that
I(a') < Fy(a®), for all 4 M, and there exists 4o € M such that I (2!) <
< (2%). But a! is in D(a0), i.e. F(x) < Fy(a%) tor all 1e N, so that
Fi(at) < Fy(a®) for all e {1, ..., p} and F; (') < F;(2°), Which means
that 1'(al) < F(z%, implying a0 ¢ mP(I/D), in contradiction with the
choice of 20.

We say that the system

{G(m)

0
(9) I’j(ﬂ/’) - lﬂ(a;o)

A A

verifies condition A in 20 if there exists {,€ {1,..., p} such that the systems

o [e ' i o
F(x) < Fi(aP),1¢€ {'17 e '719}\{7'0}
and
) <
(1) dx) £ 07
Pifx) < Fi(a0)

satisfy condition B defined bellow.

A system G(2)=0 verifies condilion B iff there exists z e R" such
that G,(2) << 0 for these e {1, ..., m} for Which G, is nonlinear and &,(#) <
< 0 if G, is affine (see Dragomirescu-Malita [2], condition 21’ on page
162). Condition B iz o regularity condition of Slater type.

THROREM 2. Let ' = (), ..., F,): B" — R? and G = (G4, ..., G,)
" — B™ be two convex wvector functions differeniiable on the domain D
defined by (1) and suppose that system (9) verifies condition A on a point
a%e D. Then e mP(F|D) if and only if there ewist the multiplicators
re P, n >0 and pe R™ n=0 such that

(1) PlyRep g
wf Gty =90

Proof. The sufficiency part of the theorem is known, see. i. Fuchs
[4], Th. 6.3.

Necessity. The proof proceeds by induction on p.

For p = 1 one obtaing the well known Kuhn-Tuacker theorem (sece
e.g. [3], p- 119).

Suppose now that the teorem is true for p = &k — 1. Without loosing
the generality we can suppose that condition A is satistied in «° for ¢,=k.
By Theorem 1 it follows that #°e mP(¢/D(2°%)), where ‘

@; = Iy, for ie M = {1, ...,k —1}, and

g

D) = {we D : Fy(w) < Fy(a®)}.

i

=
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Condition A being satisfied by the syst 9) in 20 it 's that
it is satisfied in 20 bybthe system) SR S e ety L

{G(w) =0
Fx) < Fyad), ie M.
But, applying then Theorem 2 for the case p = & — 1, there exist

Me R¥ -1, A >0 and ule B pt = 0, such that

k—1
3 N VE(a%) 4 p!" v6(2%) = 0, and
(13) g
u!? (20 = 0
Applying now Theorem 1 if follows

(14) min F(x) = F(a%), for z in the st {ve R": G(x) <0

) ?
Fix) < F(x%,7¢ M} where M — {1, .., -1
The restriction system
Gy £ 0
{if“i(m) < Fiy(a%), ie M ;

verifies the hypotheses of Kuhn-Tucker theorem and tl i i
1 e hyp , ‘ em 4 herefore ther
exist 22e R*-1 32 > 0, and ure B™ u2>0, such that g e
A—1

Y N VE() + VI + p* 76(af) — 0, and

(15)
u? G(a%) = 0
By adding (13) and (15) one obtains
(16) {AT VE(@) + p" V@) = 0
pf G(a®) = 0

where A\, — A - A3 > 0, for ie M, , — 1 ) = ! '
[ i . e =12>0, u=y u? = 0.

theorem is completely proved. . T SR

From thls_ theorem one obtains a sufficient econdition for g
be a proper efficient point (for definition see [57).

COROLLARY 1. If F = (F))_, , and & — (G . I
: : ‘ i M )iz1, p OR =(G))j=r,p and F;,, @, are
conwc.-r:_d-:_)‘je?‘ent-;.cf-b_le Junctions on the domain D (?eji'ncél by (1) and if sqjlslem
(9) satisfies condition A in 20, then a° is a proper ¢fficient point for I on D.

Proof. By Theorem 2 follows the existence of 2 e %, A > 0, such

point to

that

(17) i (ﬁ A, E.(x)) — Y AP (a9)

xeD 1==1
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But this relation is a sufficient condition for a® to be a proper
efficient point (see Geofrion [5]). . J

As was shown by Tuy [9] condition B is sufficient for the stabﬁﬂ;y
of systems (10) and (11). Benson and Morin [1] gave another suffient
condition for proper efficiency based also on the stability of a system
o inequalities. | )

By using Theorem 2 we can prove that if ¥ and @ are affine tl‘l_en
every efficient point is a proper efficient point, a well known propelty.

COROLLARY 2. If F, is strictly convex and differentiable on .-f:h,e
domain D defined by (1) and 'yt =2, ..., p, Gf,‘-._a; =1, ...,m are r.ff[;}m
Junetions, then every Pareto minimum point &° o_z" J_f’on D is ._fe‘-p-r‘u;oe? effi
cient point, excepting the point ' for which F(a') = 1;(.15111).1 1 ().

Proof. One can sce that system (9) verifies condition A in every
point a°# ' and Corrollary 1 can by applied.
Let
®:X XY - R?
(18) {X =R,Y =R R" = {we R": 2 = 0}
We say that (20, 4°) is a Pareto saddle point for ® on X x Y if there
are no points we X and ye Y such that

B, y°) < D(a0, 9°) and d(2? y%) < (2% y)

QLG Y oV
We shall denote this situation by writting (a2, y°) € SA(D/X < Y)
Define now, as in [6], the sets

a9 M=U{(x,9)e X XY :ye MP(®(x,.)/Y, and
re X
(20) m=\J{(z,y)e X XY :wemP(O, y)/X).
yeY

In the following the function ® will be given by

(21) D, (x, y) = Fy(z) + ?/T G(2), ¢ = ANy 2
where
(22) X =PR,Y = R?

THEOREM 3. Let ® = (D)1, » be given by (21). :

(7) IjT(Iic}g?;{O)cf SA(D/X x lﬁ) )thenp there '@mistg re Ri’, )\%0, such that
(29, 4°) 15 a saddle point for the scalar junctwno A O(D.on X Xdl Abe! S
(i1) If there ewists e R?, x> 0, such that (x° y°) is a saddle poin

scalar function AT'®, then (a° y°)e SA(Q/X X Y).

Proof. By Mheorem 4 in [6], follows a°€ mP(¥/D) and then, by
Theorem 7.4.1. in [8], one obtains the desired conplusmn. e .
(43) Supposing (29, %) € SA(®P/X X Y), one can a()rls% two situations :
(41,) there exists we X ysuch that ®(w, 9°) < D(a° y°)
implying A7®(z, 4°) < 27®(a? 4°), a contradiction, or
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(i1y) there exists ye Y such that Q2% %) < ®(af, y), implying 27d(a0,
), again in contradiction with the hypotheses that (a0 9°) is a saddle
point for A"® on X x Y.

TiworEM 4. Let (a% y°) € mP(D/I) where M is defined by (199

and O is defined by (21) and suppose that the Junetions P, i'=1, ..., p,

Gy i =1,...,m are comvex and differentiable on the domain D deftwed by

(1). If (a® %) is a proper efficieni point then there exists y&€ RT such that

(2% y) e MP(D/m), where m is defined by (20)

Proof. In [6] we have proved that
(23) M= {(zy)e R x R"; K(a) < 0, yTG(w) = 0.

Therefore, if (a9 #% is proper efficient then there exists re 22
»
A >0, ¥ & =1 such that

=1

min_ 3 O(a, ) = 1700, 40)
(45 9) eM

But, by (23) and the definition of ® it follows that
(24) min A" F(z) = 2T F(a°)

xXED

Taking into account Fritz-John liecessary condition (see [3], p. 101)
one can find y e R™, y >0, such that (a, ¥) be a saddle point for the func-

tlon™
MOz, y) = 27 F(x) + y* G(z) on R* x 27 ond
yT G(a®) = 0
Therefore, by Theorem 3 (i7) it follows (2% y)e SA(D/X x Y) and
by [6] Theorem 4, (a9 y) MP(®D/m).
Define now the primal and dual Pareto optimum problems :
The primal problem (P): Determine the set mP(D/H).
Tiesdual problem (D) : Determine the set MP(D/m) "
Remark that Theorem 4 gives sufficient conditions in order that the

existence of a solution of problem (L) imply the existence of a solution
of problem (D).

CororLARY 3. Suppose that Iy s strictly conven and differentiable
on the domain D defined by (1), I, i — 5 oapand G0 =1, ..., m are
affine functions, ae mP(F|D) and ad + @'y where min Fy(z) = Izt

LT ol ref)
Then there emists ye R™ y=0 such that (a° y) e MP(D/m).

Proof. Follows from the Corollary 2 and Theorem 4.

In order to obtain results concerning the reverse connection be-

tween problems (D) and (P) we shall study some particular cases in which
we know the set m.
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THEOREM 5. Suppose that the following conditions hold :
(i) ® is defined by (21);
(it) m is defined by (20); : _ Tt
(iit) By Ei )stricil;{// convexr and differentiable on the domain D defined
by ;o and . .
(1v) F/, i :’ iwe s poand Gy =134, m o are affine functions.
Then

1 =1
P=

b
b i ' it
M= {(af, y)e R*XRY: Y M Ve F(2)4+y" V. Gx)=0, 5> 0, ) X 1}

(25) -
Proof. Denote by o the right member of equality (25). It (%, ) e m

then, by the definition of m, z € mP(®(., )/R").

By Theorem 1

min (Fy(#) + 77 G(z)) = Fy(@) + y* 6(@),

Y€eA
where A is ﬂle sot of solutions of the following system of inequalities :
(26) F) + §F Glo) < F(@) + 57 6(E), i =2, .5,

The system (26) satisfies condition B 80 that, by Kuhn-Tuckeér
theorem, follows the existence of a rxe RP-', A 2 0, such that

T A hl o ya G( )) 1 0 2
@7)  VE(2) + " VG@) + 3 MTE() + ¢ vl
i=2
Denoting
y j) .
Xl:ll(l+ﬁ7\i)>0) X1'27\1'/'( "l‘zki)’ t=2...,D,
1=2 i i=2

onhe obtaing :

P —
(28) L VE(@) 4 y" vG(x) = 0, Zl M=1 4>0

K3

i~

so that mcw. ‘
Tn order to prove the reverse inclusion observe that for every i€ I,
A= 0, %, >0, by the striet convexity of I, the seb

P 1
{(x, y)e R X RY % N vV F(x) 4+ 94T vGE(x) :OJ»
i=1
» . . = n
is non-void. But then, the funetion Y. 2 F, is also strietly conex, for
)

V= 1) 1 “ad
A = 0, %, > 0. Therefore, all of the implications from the l.udst part of
the proof can be reversed, giving w =m. The theorem Is proved.
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THEOREM 6. Suppose that the Jollowing conditions hold ;

(1) (@, y)e MP(D/H);

() © is defined by (19);

(i0d) Iy ds strictly convex and differentiable on the domain D defined

by (1);
() Fyi=2,...,p, and G, i — Lio.o,m are affine functions
(v) there exists re R?, % > 0, sueh thut

{29) max A" Oz, ) = 17 O, 7).

(v, y)em

Then there exists an element (2%, gl e RB* x R», belonging to mP(O /M),
Proof. Put

(30) my == {(x, y) € B* X BY: AT vI(a) + ¢~ v {(z) = 0

In the proof of Theorem & it was shown that 2 =0 and %, >0
tmplies m, # ® and m, <m. Therefore there exists (a1, yYy e m, such that

max A" Oz, y) = 1% Oal, o),
(v, ) Eny
By [3], p- 153, (iiiy) it follows
Geh) <0 -
le G(’L‘l) —
_ BY [6], Theorem 6 it follows that (a2, y)e M, so that (2, 1) e
e M nm. But applying [6], Lema 1 one obtains (2!, ) & SA(O/R x B™)
and so (a', y') e mP(®/M) [6] Theorem 4.
Knowing the form of the sets m and M we can prove :
Trmorry 7. Suppose :
(1) ® s defined by (19);
(1) I, ds strictly convew and differentiable on the domain I defined
by (1);
(6) By i =2, ..., p, and Gy i =1, .. amoare affine functions.

Then x e mP(F D) if and only if @ is a solution of the mulli-parameter
convew programming problem (P,) given by

P
(31) min (Fl(ac) +3¥ N Fi(w)), Nz 0,0 =2, ..., p.
YED =2
Proof. By Corollary 3, if z ¢ wmP(F(D), and @+ al, where al is given
by
(32) min (@) = F (2.

xeD

then there exists i such that

(@, y) e SBA(Q/R" x B™),
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so that (x,y)e m n M. Therefore

4
Z N VE () + ¢yt vGE(2) = 0

1=1
Ga) =0
y* G(x) =

One can see that the system (33) has a' as solution for A = 0,
i=2,...,p. Congequently, if xe mP(#/D) then % is & solution of (33)
which nieans that it is also a solution of the problem (P,). Now suppose
that # is solution of (33).

By Theorems 6 and 4 in [6], # will be an element of the set mP(I/D).
The theorem is proved.

This theorem is important because it makes possible to find all
points of the set mP(F/D) when ¥, is quadratic and positively defined
and all of the other functions are affine.

(33)
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