MATHEMATICA — REVUE D’ANALYSE NUMERIQUE
ET DE THEORIE DE L'APPROXIMATION

L’ANALYSE NUMERIQUE, ET LA THEORIE DE L’APPROXIMATION
Tome 15, N> 2, 1986, pp. 95 - 103

VORONOVSKAJA-TYPE THEOREMS FOR A
CERTATN NON-POSITIVE LINEAR OPERATOR

10N BADEA and DORIN ANDRICA
(Craiova) (Cluj-Napoca)

"This paper deals with some: Voronovskaja-type theorems for a certain non-positive linear
operator in two variables, which is a pseudopolynomial operator in the sense of Marchaud,
considered by I. Badea in [2].

1. Introduetion. There is a wide variety of both pesitive and non-
positive linear methods in the approximation of multivariate functions.

One of these methods yields the so-called pseudopolynomial eperators.
Their construction is also based on univariate mappings, but the resul-
ting operator is not mecessarily positive, even if the underlying univariate
ones are So.

In this paper we shall consider an example of a pseudo-polynomial
operator which is based upon the Bernstein operator. For each natural
% (here a natural number is a positive integery and real-valued function
J(x,y) defined on [0,1]2 = [0,1] X [0,1], the sequence {P,f} is defined
by the sum

(1.1) PS5 @ ) :-;Z {f(”’ ”:j) +f(% ’ y)_f(%’i)}

0 \ L

{p'n,i(w) + pw,i(?/)}?

where
n

(1.2) P, i(0) = (@.
\

1,

N

)w@(l — o, < i< n, 0<®

For every fe 0([0,1]?) (the linear space of real-valued continuous
functions defined on [0,1]%), the sequence {P,f}, n > 1, converges uni-
formly to f on [0,1]% (see Badea [2] and Badea and Oprea [3]).

Quantitative versions for these theorems were given by Badea [2]
(involving the first modulus of continuity) aund recently by Gonska [7]
(involving the least concave majorant of the first modulus of continuity).

H.H. Gonska [7] also showed that P, is not a positive operator.
Indeed, for the function f, > 0 given for 0 < @, y < 1 by

{(1—0() fody=/_2n0<Lz2<g1

@, y) =
Todgad!) 0 elsewhere in [0,1]2

‘we have P.,(f; 1/2n, 1/2n) = —(1 — 1/2n)" < 0,



96 I. BADEA, D. ANDRICA J 2

"Thé aim of the present paper is to' prove some Voronovskajatype
theorems for the operator P,. We shall prove Voronovskaja-type theo-
rems with traditional flavour and, in the third section, we shall prove
also a Voronovskaja type theorem for functions which are bidimensionally
derivable, a class of functions firstly considered by Bogel [4], [5] (see also
[6] for a more recent reference).

2. Some Voronovskaja-type theorems. ‘Tn. the remainder . of this
paper, we'denote by C"[0,1]) the linear space of real-valued -functions
f(z) defined on [0,1], n-th ovder derivable, such that f™(z) is continuous
on [0,1]. Also C*([0,1]?) is' the linear space of veal-valued tunctions f(z,y)
r-}e'-i—i.:lf

defined on [0,112 with all partial derivatives ——
dxt gt

(%, #) 4 k>0,

t -k < m continuous on [0,1]2
..An our theorems from this paragraph we shall use two well-knowi
theorems stated as

Levma 1 (Voronovskaja’s theorem). If ge €2 ([0,1]) we have :

(21) ‘ lim n[B,(g ;1) = g(t)] =/ (1/2) 41 = )g"@)
LEMMA 2 (Sikkema’s theorem). If ge 04 ([0,4]) we have :
Pl s "{nl‘Bn(g; 1y = g1)] fLZ-*Lg"m} i
! 1(1 Fi- t)(l - Zt) 1 p u -.Iv
' (R L\ b M i Lied

" For a proof of Lemma 1, see Voronovskaja [117] and ' for' Lemma *27
see Sikkema [10]. ' '
Then we have

THEOREM 1. Let S be an clement of the space C¥ [O,VI]ZI). Then

. il — 2 1 — 1 029
lm nw[P,(f; ®, ¥v) — fl@,y)] 5 e | (, ¥) +u _f(w
n—00 4 dp? . 4 8y2

Proof. Since P,(f; », ) :-2 ‘% {.f (w, i) L1 (_1, y)._
n n

3 Y ey

=0

"'f(l ”—"/—)} -{pn,i (m)+pnz (?/)}7 we can \Vl‘ite
.

n . ;
Py(f5 @, 9) = (12)B,(fi@,.); )+ (1/2)B,(f(.,9)5 @)~
—(U2)Bu(f(-5-)52) + (L2) B(f(%, ) 50)+
HA2)BLfC )5 9) — A2)B(IC, )5 )
where B (f; )= i} f@/n)p, (@) is the Bernstein opell'a,tor.
Using now thizoequality (2i1) from Lemma 1 we have

Pu(fs @, y) — [, y) = AY2)[Bu(flx, .); ) — f(w, @))+

‘have lim n {n[Pﬂ(f; z, y) — flo, ¥)]
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2B y) 5 2) — flw, y)]— (1/2) [Bu(f(-,.); @) — flw, )+
+@/2) [Biflw); ) — flw, 9)1+H1[2) [B.(f(9); v) — fy, 9)] —
—(1/2) [B,(f(- )5 ¥) — fy, y)]=

:w(lém)a_zgi(w y)+?/(1—y> a*f

4n dx? 4dn oy?

where lim ne, (2, y) = 0 uniformly in respect with @ and .

"H—-00

(@, ¥) + e, ¥),

Hence the 151'00f of Theorem 1 is complete.
Another result is the following
TororeM 2. Let f be an element of the space C*([0,17%). Then we
(1 — @) 02 y@ —y)
=y g _f. (m, y) /Ay 7 A
4 ox? 4

(1 — )1 — 2y)

N—=00

0 o o — )1 — 22) 0% i

g y)} = 2 (o, )+ "
S gy PL O P L g ot
G (00 TP (o g H LT A ),

Proof. Using the decomposition of P,(f; #», y) with the help of
Bernstein polynomials from the proof of Theorem 1 and the equality (2.2)
of Lemma we can write the desired relation. ]

' Hence the proof of Theorem 2 is complete,

3. A Voronovskaja-type theorem for hidimensionally derivable
funections. In 1934 Karl Bogel [4], [5], [6] introduced the notions of bidi-
mensionally continuous and derivable functions, as natural generaliza-
tions of the usual notions from the nnivariate case. We recall here these
definitions.

We say that the real-valued function f(#, y) defined on [0,1]2% is

bidimensionally continuous (B-continuous briefly) in the point (s, t)e€

€[0,1)2 if lim |[f(z, y) — flw, 1) — f(s, 4) +f(s, )] =0
=13 -
and B-eontijnuous at A < [0,17%if it is B-continuous in every point of 4.
Function f(», y) is bidimensionally derivable (B-derivable briefly)
in the point (s, )€ [0,1]%if there is a real number denoted as f'(s, 1), which
has the following property
lim .ﬂa"a y) —]‘(w7 t) _j(/‘v; ?/) +f(87 t)
e (@ ~8)y — 1)

¥ 1

(x—s]{y—1)#0

—f{8 0] =0

In the proof of our main result of this paragraph we need the follow-
ing

Luyma 3. If the real-valued function f(®, y) defined on [0,1]2 s
-B-derivable in (my, y,) then there is a real-valued Sfunction o(z, y), defined
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on [0,11% continwous in ihe Dpovrt (g, y,) and which vanvshes in the points-

of the set

Oy : = {(w, y) e [0, 1P (2 — @)y — Yo) = 0} such that Sfor all
(@ y) e [0,1]% we have

(3.0) @y y) — flao, 1) — f, 4,) - (@, y,) =
3t Yo) 1 (s, 3 e — T )y — y,).
Proof. We take

0, if (2, y)e Oy
90(00, y) = f(w’ Y) —f(wa Yo) _"j(xo, Y) _I_.f(mm Yo)
(@ — @)y — Yo)

in [0,17]2
Now we are ready to prove the following
THEOREM 3. If the real-valued Junction  f(a, y) defined on [0,172

s B-continuous at the whole unit square and B-derivable in (u,v) then we
have

f(’l[/, IU) i Pn(f’ U, ’U) =

‘"j’(u, o{u(l — u) —+ o1 — v)} }o (Vlﬁ)—l_ 0 (_1_

_) + o)

Vn

As usual, in the above equality o and O are the well-known symbols
of Landau.

The appearance of Landauw’s symbol ¢ in Theorem 3 is Jjustfied by
the following example of a B-derivable real-valued function flz, y) at
[0,1]2 for which the operator P,(f; x,9) does not converge uniformly to
f@y) on [017

[OIH

Ezample. If we denote by B the boundary of the unit Square [0,17]2

let us consider the following function

0 it (2, y)e B
folw, gy 22 % B0 B
2y elsewhere in [0,172

It is easy to see that Jol@, y) is B-dervivable at [0,1 12 and fy(z, y) =1 for-
every point (z, ) from [0,1 ]2, but P.ifo; 0,0), n— 1,2,..., does not con-.
verge to f,(0,0) = 0. Indeed we have P,(fy; 6,0) = —(n 1) (2n 1)/6mn,.
because p, ,(0) = 1.

This example extends an example of Badea and Oprea [3] who give:
a B-continuous function which is not uniformly approximated by the-
operator P, . '

Proof of Theorem 3. Applying the above equality (3.0) from Lemma,
3, we can write

(3.1) flouy ) —j(u, %) _f(.:'., ,l,) +_;(i, _*_'.) -

n "

{f’(u, o)+ qo(; , Z)}( S —u)(7 ~9)

— 1" (@9, 4y, elsewhere.
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and
(3.2) Iim ¢(x, ¥) = 0.
Vv

Multiplying equality (3.1) with (1/2) {Pu,(®) + paiy)) iblnd adding

these equalities after the variable i we get, keeping in mind that 55:"0 Pai(l) =

= 1, the following relation

(3:3)  flu, v) — Polf; w, v) =%f’<u, O)Sultty 0) - ou(u, o)

where

(3.4) 8y, v) = = }: (i —u) (% I v) {Da,i(w) + P, i(0)}

2 n

1=0

and

(3.5)  a,(u, v) :% e (%, i) (i —u) (; iy v){pn,i(u) + Pu,i(v)}

n n

Firstly, we shall caleulate the sum S,(u, v) given by (3.4); we have

n 1 t ' .
iZ‘:O (Tl — u) (71/“ B /D) pn,1(u)

n 1 11‘ N ’
— i b} inn,i(u) — —(u - v) 5_, 1P, (w) 4+ uv
n? ‘I n =0

From the theory of the Bernstein polynomials it is known that
S ail) = nty 3 12, (1) = nt 4 n(n — 12
i=0

i=0

Thus we have
, . 1 !
4 (4 1 )
— Uy — — ) Pa() =-—u(l — u)
e vt U1 ) (o2 B
In a similar way, we deduced that

3.7) ) o) (= =) Pl = Lot~ )

n " n

i=0
Adding the last two equalities, we get
1
7n

(3.8) Saluy, v) = —{u(d — u) + o(1 — o)}
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Now we estimate the expression o,(u, ).

ing sets : Let us consider the follow-

) 1
Ad=tily— 2oyt
{7/ ‘u " )<n tre 0, 1,.. ., m)
.B:{i:

Using these notations, we can write :

1

T -
7)“—71(<n 4}c{0, 1.0 m)

~

(3.9) oW, v) = Gf(tj)(u7 )

et o

j=1

where the sumsg o (u, v) are given by

(3.10) 6 (u, v) — Eie‘%s@ (_n_ yr— )(*‘ i u,)(_@ a4 v){pn,,.(u)-{—p”_i(@)},

(s 72

1 T 1 1 ;
o (U, v) = — —, == —u)fX — ,
4 2 f¢A$¢'¢B(P ( w’ m )( n u)( n 1)) {pa.ifu) 4 Pui(0)}y

{(3.11)
i 1aieod nio 1 i q . .
(312) " of(u, v) —— (ﬁ LRI (AT S
: 2 ié;iEB 4 n ’ n n i3 n v pn.i(“)?
(3.13)  o®(u, v) = — (_ N (_ 4 i
, 2 ieAZ¢¢B<P n ’n n i P v pn,i(’l)),

B8 o= 5 ofL, S - o) = ) paato

(3.15)  o®u, v) = — (_ INE N
? 2 £EA;Z¢¢B<P n ’n n " V) Py,().

If we denote by o, the restriction of the function o to the sef

T oY)
{(;,;) ite 4 B}we deduce that, according to the equality (3.2), for an

<o
B ‘ 0 ) . . n n

From this relation and from the obvious inequality lz —y| <1 for
@y € [0,1] we can estimate o (u, v) in the following way )

arbitrarily chosen > 0 and » sufficiently large, we have ®, ( l ’) ok

i
% ——

|4
loP(u, o)l <<y
2 i€ n

)
P —
AnB n

{pn,i(u) i pn.t(v)}<

Paal) } .

)
P — —
n

e
<EE

€A

T
U — ;’pn,i(“) + E

1EB
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But the following successive inequalities are true:

Y

i€ 4

"

Pai(u) <Y

1
2Yn
The last inequality was proved by 7. Popoviciu in 1942 (it also follows

from a striking result due to Schurer and Steutel [9]). Hence, for every
sufficiently large =, we have

7 1
e U —— | Pyi(u) <
n S

4=0

(3.16) lo®(u, v)| < —=
2Vn

" Now we evaluate the sum o) given by (3.11). !

From the equality (3.1), we get

AV 7
(e s
nonj\n n -

f(ﬂi%) —f(f} v) —J‘(u,%)+'j(u, )

Because the function f is B-continuous at [0,17%, there is an M, > 0 such

that ,
) ) oo ) e

(see Badea [1, Lemma)]. Hence there is an M — M, -+ |f'(w, »)| such
that

i e L

Using the above inequality (3.17) we can write

<

-+ 1f(u, v)]

< M,

< M.

‘01(12)(/“; 1))| < L Z {p’ﬂ,’t(u) + pn,i(v)} < NG {Z‘ pn,i(u) + an,i(’v)}
i¢gA i¢B ) 2 i¢a ; i¢B ’
(3.18) T - '
k

It is known [8] that if 8 >0 and A(x) = lk:|ls -2

> 3}: £
n
= {0, 1,...} then for every m == 0, 1, 2,...there is a universal constant
K,,>0, such that

K
kEKA(x) nmSZm

Using ‘this result with 8§ = »~4 and m = 3 we find that .

(3.19) Y, () < 0

Ay KL
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From (3.18) and (3.19), it follows that

(3.20) Vrla, o)< 2z,
%
‘where 2, >0 i3 a universal constant.
In a similar way, we deduce that
(B.21) Vitlou, o)) < 21 je s, 4y,
7

where M, M, >0 are also universal constants.
FI'on} Inequalities (3.16), (3.20) and (3.21), we conclude that for
every sufficiently large » we have
| 4
Vol olP(u, v)

i=1

Qi_’_iui
2 "

(M, >0 is a universal constant), i.e. we get

4
(3.22) o1, v) = o [
LA o5 0l)

On the other hand, using inequality (3.17), we can write

M M
(323) ’G,(f)(u, /U) l < Z pu,i(@) < — an,i(/v) <
2 i¢d, ieB 2 igAd
Mfn » i\
< U —— iV
o 5 () et

Using again the identities known from the theory of the Bernstein polyno-
mials we get

” ;2
(3.24) > (v ) et = (w — o 4 L)
=0 n "
From (3.23) and (3.24) if follows that
(3.25) A 0) =0 (1) 4 o/
Vn
In a similar way, we conclude that
(3.26) 6O (u, 8) = 0 (i_) 4 0(fn).
Va

¥rom relations (3.9), (3.22), (3.25) and (3.26), we get the following esti-
mation

1
3.27 o ) = —
(3.27) W1ty ) = o ( W) +0(

1

Vﬁ) +o(/w).
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From relations (3.3), (3.8) and (3.27) we have the desired result.
Now the proof of Theorem 3 is complete.
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