L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 15, N° 2, 1986, pp. 153-162 the production of the state of

L. days to gather the second to the second t

turn controller by Alexander of the Lord Annie of the Alexander of the Annie of the A K-MONOTONE BEST APPROXIMATION OPERATOR WHICH IS NEITHER MONOTONE AND (ESSENTIALLY) NOR (0)-MONOTONE

RADU PRECUP (Cluj-Napoca) Pratitize various property and to the contract of the contract o

1. Let X and Y be two linear spaces, $\langle \cdot, \cdot \rangle : X \not\setminus Y \to \mathbb{R}$ a bilinear functional, $K \subset X$ a convex cone (i.e. $K + K \subset K$ and $\alpha K \subset K$ for any $\alpha \geq 0$), K^* the polar cone of K, that is $K^* = \{y \in Y : \langle x, y \rangle \geq 0 \text{ for all } x \in K\}$ and let A be an operator from X into Y. The operator A is called monotone if

(1)
$$\langle x - x', Ax - Ax' \rangle \ge 0$$
 for all $x, x' \in X$ and is said to be (0) — monotone if

(2)
$$Ax - Ax' \in K^*$$
 for all $x, x' \in X$ such that $x - x' \in K$.

In our previous paper [3] we have defined and studied the larger class of the K-monotone operators.

Definition ([3]). The operator $A: X \to Y$ is said to be K-monotone if

(3)
$$\langle x - x', Ax - Ax' \rangle \ge 0$$
 for all $x, x' \in X$ such that $x - x' \in K$.

The monotonicity, (o)-monotonicity and K-monotonicity properties can be extended to multivalued mappings.

Obviously, any monotone or (o)-monotone mapping is a K-monotone one. Therefore, the study of the K-monotone mappings is important for a synthesis of some results in monotone and in (o)-monotone mappings.

In the papers [3], [4] we have proved that if the convex cone K of a reflexive Banach space X has non-empty interior, then some wellknown results in the monotone operators theory, about maximality, local boundedness and demicontinuity can be extended for K-monotone mappings from X into its dual space X^* . Moreover, if K has non-empty interior with respect to the weak topology on the reflexive Banach space X, then each K-monotone, K-hemicontinuous and coercive operator A from X into X* is surjective (A is said to be K-hemicontinuous provided that for every $x \in X$ and $u \in K$ the map $t \mapsto A(x + tu)$, $t \in \mathbb{R}$, is continuous in origin with respect to $\sigma(X^*, X)$ -topology of X^*).

The aim of this paper is to give an example of K-monotone operator which is neither monotone and (essentially) nor (o)-monotone.

2. In what follows X is a real Hilbert space, Y = X and the bilinear functional $\langle .,. \rangle$ is the scalar product on X. Denote by $\|\cdot\|$ the norm in X induced by the scalar product, by || || an arbitrary norm in X, equivalent with $\|\cdot\|$ and by C a nonvoid closed convex subset of X.

The mapping $B = B(\|\cdot\|'; C)$, $B: X \to 2^x$ assigning to each $x \in X$ the subset $\{y \in C; \|x - y\|' = \inf \|x - z\|'\}$ is called the best approxima-

tion mapping by elements of C and with respect to the norm $\|\cdot\|'$.

Since the space $(X, \|\cdot\|')$ is reflexive, we have $Bx \neq \emptyset$ for all $x \in$ $\in X$. Moreover, if the norm $\|\cdot\|'$ or the subset C is strictly convex, then for each $x \in X$ the subset Bx contains a unique element denoted by x^* : in this case the mapping B is an operator from X into X.

It is well known that the operator $B(\|\cdot\|; C)$ is monotone for every

nonvoid closed convex subset \bar{C} .

For other norms $\|\cdot\|'$ the operators $B(\|\cdot\|'; C)$ can be not monotone, but in some additional geometrical conditions imposed to the norms and to the subsets C, they can be (o)-monotone or only K-monotone with respect to certain cones K.

In what follows let us consider the strictly convex set $C = \{x \in X : x \in X :$ $||x|| \leqslant 1$, a fixed element $u \in X$, ||u|| = 1 and the norm $||\cdot||_u$ associated to u as follows:

As - age to for the a at t X and

$$\begin{aligned} \|x\|_u &= \|x\|, & \text{if} \quad |\langle x, u \rangle| \geqslant \|x\|/\sqrt{2} \\ &= \|x_u\|\sqrt{2}, & \text{if} \quad |\langle u, x \rangle| < \|x\|/\sqrt{2}, \end{aligned}$$

where $x_u = x - \langle \cdot, u \rangle u$.

If we put $v = x_u/\|x_u\|$, then we remark that:

(5)
$$||x||_{u} = ||x||, \text{ if } \langle x, v \rangle \leqslant ||x||/\sqrt{2}$$

$$= \langle x, v \rangle \sqrt{2}, \text{ if } \langle x, v \rangle > ||x||/\sqrt{2}.$$
Let us consider the following convex cone:

Let us consider the following convex cone: The atomorariteize, repenonoisudeity and if anomonicity propertion

(6)
$$K_u = \{x \in X ; \langle x, u \rangle \geqslant ||x||/\sqrt{2}\}.$$

If we assume that dim $X \ge 2$ and we write A in short instead of $B(\|\cdot\|_{u}; C)$, then we can get the following main result.

THEOREM. 1°. The operators A and -A are not monotone.

2°. For any convex cone $K \subset X$ with dim $K \geqslant 2$, the operators A. -A are not (o)-monotone. 3° . The operator A is K_u — monotone. and - A are not (o)-monotone.

3. For proof we need some lemmas:

Lemma 1. For any $x \in X$, the best approximation element x^* of x by elements of C, with respect to the norm $\|\cdot\|_u$, belongs to span $\{x,u\}$.

Proof. Suppose that for some $x \in X$, the best approximation element x^* of x by elements of C and with respect to the norm $\|\cdot\|_u$, does not belong to span $\{x, u\} = X_x$. Then we may find $x^{**} \in \text{span } \{x, u, x^*\}$ such that $x^{**} \neq x^*$, $\langle u, x^* - x^{**} \rangle = \langle x, x^* - x^{**} \rangle = 0$ and $d(x^*)$. $(X_x) = d(x^{**}, X_x)$, where for some $z \in X$ we denote $d(z, X_x) = \inf \{ \|z - x\| \}$ |-y||; $y \in X_x$. It follows that $||x^{**}|| = ||x^*|| = 1$, $||x - x^{**}|| = ||x - x^*||$ and $\langle u, x - x^{**} \rangle = \langle u, x - x^* \rangle$. Therefore, $||x - x^{**}||_u = ||x - x^*||_u$, which contradicts the uniqueness of the best approximation element by elements of the strictly convex set C, with respect to the norm $\|\cdot\|_{\mathfrak{m}}$.

LEMMA 2. Let $x \in X$, ||x|| > 1.

1°. If $x \in K_u \cup (-K_u)$, then $x^* = x/||x||$.

2°. If $x \notin K_u \cup (-K_u)$ and $x - x_u/\|x_u\| \notin K_u \cup (-K_u)$, then $x^* =$

3°. If $x \notin K_u \cup (-K_u)$ and $x - x_u/\|x_u\| \in K_u \cup (-K_u)$, then x^* is the unique element satisfying the following conditions:

$$x^* = (\alpha \lambda / \|x_u\|) x_u + (1 - \alpha)x \text{ for certain } \alpha, \lambda \in [0, 1],$$

(7)
$$|\langle u, x - x^* \rangle| = ||x - x^*||/\sqrt{2},$$
 $||x^*|| = \mathbf{1}.$

Proof. 1°. Let $x \in K_u \cup (-K_u)$, ||x|| > 1. Then $x - x/||x|| \in K_u \cup$ $(-K_u)$ and therefore $\|x-x/\|x\|\|_u = \|x-x/\|x\|$ $\|.$ Since $\|x-x/\|x\|\|_u \le \|x-x/\|x\|$ ||x-y|| for every $y \in C$ with ||y|| = 1, as we can easily see, and since $\|x-y\| \le \|x-y\|_u$, one obtains $\|x-x/\|x\|\|_u \le \|x-y\|_u$ for every $y \in C$ with ||y|| = 1. Latter than ||y|| = 1.

2.° In what follows we denote by v the element $x_n/\|x_n\|$. From x- $-v \notin X_u \cup (-K_u)$ we deduce that $x-v=\lambda z$, where $\lambda>0$, $\|z\|\leqslant 1$ and $\langle v, z \rangle = 1/\sqrt{2}$. We have $||z||_u = 1$ and $||x - v||_u = \lambda$. Now we fix any $\overline{v} \in \text{span } \{x, u\} \cap C$. If we denote $\overline{\lambda} = \|x - \overline{v}\|_{u}$, then we have

$$|\overline{\lambda}/\sqrt{2} \geqslant |\langle v, | x - \overline{v} \rangle| = |\langle v, | v - \overline{v} + \lambda z \rangle| =$$

$$= |1 + \lambda/\sqrt{2} - \langle v, |\overline{v} \rangle| \geqslant |1 + \lambda/\sqrt{2} - |\langle v, |\overline{v} \rangle| | \geqslant \lambda/\sqrt{2}$$

because $|\langle v, \overline{v} \rangle| \leqslant 1$. Thus $\lambda \geqslant \lambda$ and since \overline{v} was arbitrary in span $\{x, u\} \cap \{v, u\} \cap \{v\} \in \mathbb{R}$ $\cap C$, it follows by Lemma 1 that $x^* = v$.

3°. Applying Lemma 1 we will look for x^* in the two-dimensional subspace $X_x = \text{span } \{x, u\}$ equipped with the orthonormal basis $\{x, u\}$ Using coordinates we may write $x = (\|x\|\cos\theta, \|x\|\sin\theta), \|x\| > 1, -\pi <$ $<\theta \leqslant \pi$.

Since $v=x_u/\|x_u\|$ we can see that $|\theta|\leqslant \pi/2$ and taking into account the inequality $|\langle u, x \rangle| < ||x||/\sqrt{2}$ we get that $|\theta| < \pi/4$. Also, $\theta \neq 0$. Indeed, otherwise (i.e. $\theta = 0$) we should have x = ||x||v and consequently $x-v=(\|x\|-1)v\notin X_u\cup (-K_u), \text{ a contradiction.}$ Therefore, $0\neq 0$. Replacing, if necessary, the basis (v, u) by (v, -u) we may assume, without loss of generality, that $0 < \theta < \pi/4$. On the other hand, from $x-v\in K_n\cup (-K_n)$ we easily find that

(8)
$$\cos \theta = \sin \theta \leqslant 1/\|x\|.$$

Since each element $z \in X_x$, ||z|| = 1 can be uniquely written in the form $z = x - \lambda y$, where $\lambda > 0$, $y \in X_x$ and ||y|| = 1, we will look for x^* in the form $x^* = x - \lambda(y^*)y^*$, where $\lambda(y^*) > 0$, $y^* \in X_x$, $||y^*|| = 1$. Then

 $\|x-x^*\|_u=\lambda(y^*)\|y^*\|_u$ and so it remains to solve the following problem of minimization in X_x of the function

$$\lambda(y) \|y\|_u, \ y \in X_x$$

with the constraints

(10)
$$||x - \lambda(y)y|| = 1, \quad \lambda(y) > 0, \quad ||y|| = 1.$$

Let us remark that constraints (10) are equivalent to

(11)
$$\lambda^2(y) - 2\langle x, y \rangle \lambda(y) + ||x||^2 - 1 = 0, \quad \lambda(y) > 0, \quad ||y|| = 1.$$

Since $||x||^2 - 1 > 0$ it follows that the necessary and sufficient conditions in order that the equation in $\lambda(y)$ from (11) has a positive solution, are:

(12)
$$\langle x, y \rangle^2 - ||x||^2 + 1 \ge 0, \quad \langle x, y \rangle > 0.$$

In these conditions the minimum value of $\lambda(y)$ is

(13)
$$\lambda(y) = \langle x, y \rangle - \sqrt{\langle x, y \rangle^2 - \|x\|^2 + 1} = \|x\| \cos(t - \theta) - \sqrt{1 - \|x\|^2 \sin^2(t - \theta)} = (\|x\|^2 - 1)/(\|x\| \cos(t - \theta) + \sqrt{1 - \|x\|^2 \sin^2(t - \theta)}),$$

where $(\cos t, \sin t), -\pi < t \leq \pi$, are the coordinates of y.

We will prove that the unique solution of the problem (9)-(10) is obtained for $y^* = (1/\sqrt{2}, 1/\sqrt{2})$, that is

(14)
$$\lambda(y) \|y\|_{u} > \lambda(y^{*}) \|y^{*}\|_{u}$$
 for every $t \in (-\pi, \pi], t \neq \pi/4$.

Let us denote for simplicity a = ||x||. Then the system of inequalities (12) is equivalent to

(15)
$$\cos(t-\theta) \geqslant \sqrt{a^2-1/a}$$

which gives

(16)
$$\theta - \arccos \sqrt{a^2 - 1}/a \le t \le \theta + \arccos \sqrt{a^2 - 1}/a$$
.

To prove (14) we will consider more cases:

Case 1. Let $\theta - \arccos \sqrt{a^2 - 1}/a \leqslant t \leqslant -\pi/4$. Since $0 < \theta < 1$ $<\pi/4$ we have $|\cos t| \le 1/\sqrt{2}$, that is $|\langle y, v \rangle| \le 1/\sqrt{2}$. So, according to (5), $||y||_u = ||y|| = 1 = ||y^*||_u$.

On the other hand $0 < \cos (\theta - t) < \cos (\pi/4 - \theta)$ and using (13) we see that $\lambda(y) > \lambda(y^*)$. Therefore, in this case, relation (14) holds.

Case 2. Let $-\pi/4 < t < \pi/4$. Then $\cos t = \langle y, v \rangle > 1/\sqrt{2}$ and consequently, by (5), $||y||_u = \sqrt{2} \cos t$, while $||y^*||_u = 1 = \sqrt{2} \cos \pi/4$. Now,

 $f(t) = (a \cos(t - \theta) - \sqrt{a^2 \cos^2(t - \theta) - a^2 + 1}) \cos t$. According to (13) we see that for $-\pi/4 < t < \pi/4$ inequality (14) is equivalent to

$$(17) f(t) > f(\pi/4).$$

To prove (17) we will consider two subcases: Subcase 2a. Let $-\pi/4 < t < \theta$. We will prove the inequality

(18)
$$f(t) > f(\theta),$$

or equivalently the following one

(19)
$$a \sin t \sin (\theta - t) + \cos \theta > \cos t \sqrt{a^2 \cos^2(t - \theta) - a^2 + 1}$$

for $-\dot{\pi}/4 < t < \theta$.

First we note that the left-hand side of expression (19) is nonnegative. This is clear for $0 \le t < 0$. Now, if we suppose that $-\pi/4 < t < 0$ and we take into account that $0 < \sin (\theta - t) \le 1/a$ (in view of (15)), then we obtain $\sin t \le a \sin t \sin (\theta - t) < 0$. But, $\cos \theta + \sin t > 0$ because $0 < \theta < \pi/4$ and $-\pi/4 < t < 0$. It follows that the left-hand side of (19) is nonnegative even for $-\pi/4 < t < 0$.

Consequently, we may use the standard technique of eliminating

the radicals and so, inequality (19) can be reduced to

$$a \sin^2 (\theta - t) + \sin (\theta - t) \sin (\theta + t) > 0$$

which is fulfilled for $-\pi/4 < t < \theta$, as we can easily see.

Subcase 2b. Let $\theta \leqslant t < \pi/4$. We will prove that f'(t) < 0 for every $t \in [0, \pi/4)$, that is

$$a^2 \sin (t-\theta) \cos (2t-\theta) + \sin t < a \sin (2t-\theta) \sqrt{1-a^2 \sin^2 (t-\theta)}$$

After some simple transformations this inequality can be reduced to

$$\cos \theta - \cot t \sin \theta < 1/a$$

which according to (8) is satisfied because ctg $t > \text{ctg } \pi/4 = 1$. Thus, f'(t) < 0 for $\theta \leqslant t < \pi/4$ and in consequence

(20)
$$f(t) > f(\pi/4)$$
 for every $t \in [\theta, \pi/4)$.

Now from relations (18) and (20) we may infer that inequality (17) is true for every $t \in (-\pi/4, \pi/4)$.

Case 3. Let $\pi/4 < t \le \theta + \arccos \sqrt{a^2 - 1}/a$.

From $0 < \pi/4 - \theta < t - \theta \le \arccos \sqrt[3]{a^2 - 1}/a < \pi/2$, it follows that $\cos (t-\theta) < \cos (\pi/4-\theta)$ which, by (13), yields $\lambda(y) > \lambda(y^*)$. On the other hand, since $\pi/4 < t < \pi/4 + \pi/2$ we have $|\langle y, v \rangle| = |\cos t| < \pi/4$ $\leq 1/\sqrt{2}$. Thus, by (5), one has $||y||_u = ||y|| = 1 = ||y^*||_u$. Therefore, relation (14) holds.

Finally, it is easy to see that $x^* = x - \lambda(y^*)y^*$ is the unique solution of system (7). The proof of Lemma 2 is now complete.

Proof of Theorem. 1°. Let $x \in X$ such that ||x|| = 1 and $\langle x, u \rangle =$ $=1/\sqrt{2}$. We set $x_{\lambda}=v+\lambda x$, where $\lambda>0$. It is easy to see that $x_{\lambda} \notin K_{u} \cup (-K_{u})$ and $x_{\lambda} - v \in K_{u} \cup (-K_{u})$. According to Lemma 2.3° we have $Ax_{\lambda} = v$. On the other hand Ax = x. Therefore,

$$\langle x_{\lambda}-x, Ax_{\lambda}-Ax \rangle = \langle v+(\lambda-1) x, v-x \rangle = (1-1/\sqrt{2})(2-\lambda).$$

This number is positive for $0 < \lambda < 2$ and negative for $\lambda > 2$. Hence, the operators A and -A are not monotone.

2°. Let K be a convex cone of X with dim $K \ge 2$. We will consider the following cases:

Case 1. Assume that ri $K \cap (\operatorname{int} K_u \cup (-\operatorname{int} K_u)) \neq \emptyset$, where by int K_u and ri K we have denoted the interior of K_u , respectively the relative interior of K.

Then there are $x, y \in K$ with $x \neq y$, ||x|| = ||y|| = 1, such that $x, y \in K_u$ or $x, y \in (-K_u)$. It follows that $x + y \in K_u \cup (-K_u)$ and ||x + y|| > 1, hence, applying Lemma 2.1°, A(x + y) = (x + y)/||x + y||.

Also, Ax = x. Now, it is easy to see that

 $\langle x, (x+y)/\|x+y\|-x\rangle < 0$ and $\langle y, (x+y)/\|x+y\|\rangle < 0$, that is $A(x+y)-Ax\notin K^*$ and $A(x+y)-(-Ax)\notin K^*$, although $(x+y)-x=y\in K$. Hence, the operators A and A are not A are not A and A are not A are not A and A are not A and A are not A are not A are not A and A are not A are not A are not A are not A and A are not A are no

Case 2. Assume that there exists $x \in K$, with ||x|| = 1, such that $0 < |\langle x, u \rangle| < 1/\sqrt{2}$. Then, we may find $\lambda > 1$ in order that the element $x_{\lambda} = \lambda x$ satisfies $x_{\lambda} - v \notin K_{u} \cup (-K_{u})$. It follows that $Ax_{\lambda} = v$. Since

$$x_{\lambda} - x = (\lambda - 1)x \in K \text{ and } Ax_{\lambda} - Ax = v - x \notin K^*$$

because $\langle x, v - x \rangle = \langle x, v \rangle - 1 < 0$, we conclude that A is not (o)-monotone.

If in addition $\langle x, u \rangle > 0$, then we may find $\mu > 0$ such that the element $y = u + \mu x$ satisfies $\langle y, u \rangle = \|y\|/\sqrt{2}$. We have $Ay = y/\|y\|$ and Au = u. Since $y - u = \mu x \in K$ and $-Ay - (-Au) = -y/\|y\| + u \notin K^*$ because as we can easily see $\langle x, -y/\|y\| + u \rangle < 0$, we may conclude that -A is not (o)-monotone.

If $\langle x, u \rangle < 0$, then one proceeds in the same way taking $y = u - \mu x$, with $\mu > 0$.

Case 3. Suppose that $\langle z, u \rangle = 0$ for every $z \in K$. Since dim $K \ge 2$, we may find $x, y \in K$, such that $x \ne y$, ||x|| = ||y|| = 1 and ||x + y|| > 1. Applying Lemma 2.2° we obtain A(x + y) = (x + y)/||x + y||. Also, Ax = x. Now, we easily observe that $\langle x, (x + y)/||x + y|| - x \rangle < 0$ and $\langle y, -(x + y)/||x + y|| + x \rangle < 0$ and since $(x + y) - x = y \in K$ we may infer that A and A are not (o)-monotone.

Thus the second part of Theorem is proved.

3°. Let $x, y \in X$, such that $x \neq y$, $x - y \in K_u \cup (-K_u)$ and $Ax \neq Ay$. We will prove that

$$\langle x-y, Ax-Ay \rangle \geqslant 0.$$

Assume for the beginning that $||x|| \ge 1$ and $||y|| \ge 1$. We will consider more cases:

Case 1. Let $x, y \in K_u \cup (-K_u)$. Then $Ax = x/\|x\|$, $Ay = y/\|y\|$ and we immediately see that relation (21) is fulfilled.

Case 2. Suppose that $x, y \notin K_u \cup (-K_u)$ and $x - x_u / \|x_u\|, y - y_u / \|y_u\| \notin K_u \cup (-K_u)$. Then, by Lemma 2, $Ax = x^* = x_u / \|x_u\|$ and $Ay = y^* = y_u / \|y_u\|$.

In the 3-dimensional subspace span $\{x^*, y^*, u\}$ we may use the following coordinatizations: $x^* = (1, 0, 0)$;

 $u = (0, 0, 1); y^* = (\cos t, \sin t, 0), t \in [0, 2\pi);$

 $x = (a, 0, \alpha(a-1)), a \ge 1, |\alpha| \le 1; y = (b \cos t, b \sin t, \beta(b-1)), b \ge 1, |\beta| \le 1.$ Then, we obtain $\langle x - y, Ax - Ay \rangle = (a+b)(1-\cos t) \ge 0$, which proves (21).

Case 3. Let $x, y \notin K_u \cup (-K_u)$ such that $x - x_u / \|x_u\| \in K_u$ and $y - y_u / \|y_u\| \notin K_u \cup (-K_u)$. Then, $Ay = y^* = y_u / \|y_u\|$ and $Ax = x^*$, where x^* is the solution of system (7). In the subspace span $\{x^*, y^*, u\}$ we may use the following coordinates: $x^* = (\cos t, 0, \sin t), 0 \le t \le \pi/4$;

$$y^* = (\cos \varphi, \sin \varphi, 0), 0 \leqslant \varphi \leqslant \pi;$$

 $x = (\cos t + a, 0, \sin t + a), a \ge 0; y = ((1+b)\cos \varphi, (1+b)\sin \varphi, ab), b \ge 0, |\alpha| \le 1.$ Also we denote $y_1^* = (\cos \varphi, 0, 0).$ We have $(x-y, x^*-y^*) = 2(1-\cos t\cos \varphi) + a(\cos t + \sin t\cos \varphi)$

We have $\langle x-y, x^*-y^* \rangle = 2(1-\cos t \cos \varphi) + a(\cos t + \sin t - \cos \varphi) + b(1-\cos t \cos \varphi - \alpha \sin t)$.

Since $\cos t + \sin t - \cos \varphi \ge \cos t + \sin t - 1 \ge 0$ we observe that if $1 - \cos t \cos \varphi - \alpha \sin t \ge 0$, then (21) is satisfied.

Next we will suppose that $1 - \cos t \cos \varphi = \alpha \sin t < 0$. Then, $\alpha > 0$ and

$$(22) 0 \leq 1 - \cos t \cos \varphi < \sin t.$$

We have $\langle x-y, x^*-y^* \rangle = \langle x-y, x^*-y_1^* \rangle + (1+b)\sin^2\varphi$. Therefore, $\langle x-y, x^*-y^* \rangle \geqslant \langle x-y, x^*-y_1^* \rangle$ and so, to prove (21) it is sufficient to show that $\langle x-y, x^*-y_1^* \rangle \geqslant 0$. For this, we will prove first that $x^*-y_1^* \in K_u = K_u^*$ and after, that $x-y \in K_u$.

Indeed, using (22), we deduce that $\sin^2 t > 1 - 2 \cos t \cos \varphi + \cos^2 t \cos^2 \varphi > \cos^2 t + \cos^2 \varphi - 2 \cos t \cos \varphi$.

Therefore, $\sin t \ge ((\cos t - \cos \varphi)^2 + \sin^2 t)^{1/2}/\sqrt{2}$, that is $x^* - y_1^* \in K_u$, where we have taken into account that $x^* - y_1^* = (\cos t - \cos \varphi, 0, \sin t)$.

Next, we have to show that $x - y \notin (-K_u)$. Suppose that this is not the case, i.e. $x - y \in (-K_u)$. Then,

 $\alpha b - \sin t - a \ge ||x - y||/\sqrt{2}$, which is equivalent to the system consisting of the following inequality

$$(23) b \ge (\sin t + a)/\alpha$$

and of the inequality obtained after the elimination of radicals

$$f(b) = b^{2}(1 - \alpha^{2}) + 2b(1 - \cos t \cos \varphi - a \cos \varphi + \alpha \sin t + a\alpha) + + 2 \cos^{2}t + 2a(\cos t - \sin t) - 2 \cos \varphi (\cos t + a) \le 0.$$

To derive a contradiction we will prove that this system in b has no solution.

If $\alpha = 1$, then since $1 - \cos t \cos \varphi - a \cos \varphi + \sin t + a > 0$ and $f(\sin t + a) > 0$, it is clear that system (23)-(24) has no solution.

Next, let $0 < \alpha < 1$. We have $f((\sin t + a)/\alpha) = a^2(1 - 2\alpha\cos\varphi + \alpha^2) + 2a(\alpha\cos t(1 - \cos\varphi) + (\alpha + \sin t)(1 - \alpha\cos\varphi) - \alpha(1 - \alpha)\cos t) + \sin^2 t + 2\alpha\sin t(1 - \cos t\cos\varphi) + \alpha^2(1 - 2\cos t\cos\varphi + \cos^2 t)$.

7

9.01

Since $(\alpha + \sin t)(1 - \alpha \cos \phi) > \alpha(1 - \alpha) \ge \alpha(1 - \alpha) \cos t$, we infer that $f((\sin t + a)/\alpha) > 0$.

On the other hand, the demi-sum of the roots of f(b) does not exceed $(\sin t + a)/\alpha$, as we can easily see.

Therefore, f(b) > 0 for every b satisfying (23).

Consequently, system (23)—(24) has no solution. This contradiction shows that $x-y \notin (-K_n)$.

Case 4. Let us assume that $x \in K_u$, $y \notin K_u \cup (-K_u)$ and $y - y_u/\|y_u\| \notin K_u \cup (-K_u)$.

Then, we have $Ax = x^* = x/\|x\|$ and $Ay = y^* = y_u/\|y_u\|$. Passing to coordinates in a 3-dimensional subspace of X containing x^* , y^* and u, we may write:

$$u = (0, 0, 1); x^* = (\cos t, 0, \sin t), \pi/4 \le t \le \pi/2;$$

$$y^* = (\cos \varphi, \sin \varphi, 0), \ 0 \leqslant \varphi \leqslant \pi; \ x = (a \cos t, 0, a \sin t), \ a \geqslant 1;$$

$$y = ((1+b)\cos \varphi, (1+b)\sin \varphi, \alpha b), b \ge 0, |\alpha| \le 1.$$

Also, consider $y_1^* = (\cos \varphi, 0, 0)$. We have

$$\langle x - y, x^* - y^* \rangle = a(1 - \cos t \cos \varphi) + b(1 - \cos t \cos \varphi - \alpha \sin t) + 1 - \cos t \cos \varphi.$$

If the coefficient of b in this expression is nonnegative, then it is clear that relation (21) is satisfied. Next, let $1 - \cos t \cos \varphi - \alpha \sin t < 0$. It follows that $0 < \alpha \le 1$ and (22) holds. Since $\langle x - y, x^* - y^* \rangle \ge$ $\geq \langle x-y, x^*-y_1^* \rangle$, in order that (21) be true it is sufficient to prove that $\langle x-y, x^*-y_1^*\rangle \geqslant 0$. As at Case 3, one shows that $x^*-y_1^*\in K_u=K_u^*$. Next, the relation $x-y \in (-K_u)$ is equivalent to the system:

$$b\geqslant a\sin t/a$$

$$b^{2}(1-\alpha^{2}) + 2b(1-a\cos t\cos \phi + a\alpha\sin t) + 1 + 2a^{2}\cos^{2}t - a^{2} - 2a\cos t\cos \phi \leqslant 0,$$

which, as at Case 3, has no solution. Therefore, $x = y \in K_{u}$.

Case 5. Suppose that $x \in K_u$, $y \notin K_u \cup (-K_u)$ and $y = y_u/\|y_u\| \in$ $\in K_u \cup (-K_u)$. Then $Ax = x/\|x\|$ and $Ay = y^*$, where y^* is the solution of (7). Now, we may use coordinates as follows: $x^* = (\cos t, 0, \sin t)$, $\pi/4 \leqslant t \leqslant \pi/2$; u = (0, 0, 1); $x = (a \cos t, 0, a \sin t), a \geqslant 1$;

 $y^* = (\cos \psi \cos \varphi, \cos \psi \sin \varphi, \sin \psi), -\pi/4 < \psi < \pi/4, 0 \leqslant \varphi \leqslant \pi;$ $y = ((\cos \psi + b) \cos \varphi, (\cos \psi + b) \sin \varphi, \sin \psi + \varepsilon b), b \ge 0, |\varepsilon| = 1,$ $\varepsilon \psi = |\psi|$. Let $y_1^* = (\cos \psi \cos \varphi, 0, \sin \psi)$. We have the many of the (SE) representation of the second of the second

(25)
$$\langle x - y, x^* - y^* \rangle = (a+1)(1-\cos t \cos \psi \cos \varphi - \sin t \sin \psi) + b(\cos \psi + \epsilon \sin \psi - \epsilon \sin t - \cos t \cos \varphi).$$

Since $(\cos t \cos \psi \cos \phi + \sin t \sin \psi)^2 \leq (\cos^2 t + \sin^2 t) \cdot (\cos^2 \psi \cos^2 \phi + \cos^2 \phi)^2$ $+\sin^2 \psi \leq 1$ home Publik all leads on Yelly that young the

we may infer that $1 - \cos t \cos \psi \cos \varphi - \sin t \sin \psi \ge 0$. Now, if the coefficient of b in formula (25) is nonnegative, then it is obvious that (21) is true. Next, we assume that

(26)
$$\cos \psi + \epsilon \sin \psi - \epsilon \sin t - \cos t \cos \varphi < 0.$$

Let us remark that relation (26) is possible only for $\varepsilon = \pm 1$.

It suffices, in this case again, to justify the inequality $\langle x-y, x^*-y_1^*\rangle \ge$ ≥ 0 and for this, to show that

 $x^*-y_1^*\in K_n$ and $x-y\notin (-K_n)$. The first of these relations is equivalent to $\sin t - \sin \phi \ge \|x^* - y_1^*\|/\sqrt{2}$, and, after elimination of radicals, to the system of inequalities: $\sin t \ge \sin \psi$, $(\sin t - \sin \psi)^2 \ge (\cos t - \sin \psi)^2$ $-\cos \psi \cos \phi$)². The first inequality is obvious; to verify the second one it suffices, by (26), that $(\cos \psi - \cos t \cos \phi)^2 \ge (\cos t - \cos \psi)$ $\cos \varphi$)² or equivalently $\cos^2 \psi - \cos^2 t \geqslant \cos^2 \varphi(\cos^2 \psi - \cos^2 t)$, which is clear. Therefore, $x^* - y_1^* \in K_u = K_u^*$, and the decomposition of the second se

Now, assume that $x - y \in (-K_u)$. Then, it follows that $b \ge a \sin t$ - sin ψ and had been seed to the seed of the seed of

$$(\sin \psi + b - a \sin t)^2 \geqslant (a \cos t - \cos \psi \cos \varphi - b \cos \varphi)^2 + (\cos \psi + b)^2 \sin^2 \varphi.$$

This last inequality can be written equivalently:

$$f(b) = 2b(\sin \psi - \cos \psi - a\sin t + a\cos t \cos \varphi) +$$

$$+ (\sin \psi - a\sin t)^2 - (a\cos t - \cos \psi \cos \varphi)^2 - \cos^2 \psi \sin^2 \varphi \ge 0.$$

Observing that the coefficient of b is negative and that $f(a \sin t - \sin \psi) < a$ < 0, one derives a contradiction.

Consequently, $x - y \notin (-K_u)$.

Case 6. Let $x, y \notin K_u \cup (-K_u)$ such that

$$x - x_u / \|x_u\| \in K_u \cup (-K_u)$$
 and $y - y_u / \|y_u\| \in K_u \cup (-K_u)$.

Now, one has $Ax = x^*$ and $Ay = y^*$, where x^* and y^* are given by (7). Using coordinates we may identify: $u = (0, 0, \rho), |\rho| = 1$; $x^* = (\cos t, \theta)$ 0, $\sin t$), $0 < t < \pi/4$; $y^* = (\cos \psi \cos \varphi, \cos \psi \sin \varphi, \sin \psi)$, $|\psi| < \pi/4$, $|\psi| \leq t$, $0 \leq \varphi \leq \pi$; $w = (\cos t + a, 0, \sin t + a)$, $a \geq 0$; $y = ((\cos \psi + a))$ $(a+b)\cos \varphi$, $(\cos \psi + b)\sin \varphi$, $\sin \psi + \varepsilon b$, $b \geqslant 0$, $|\varepsilon| = 1$, $\varepsilon \psi = |\psi|$. Denote $y_1^* = (\cos \psi \cos \varphi, 0, \sin \psi)$. We have

$$\langle x - y, x^* - y^* \rangle = a(\cos t + \sin t - \cos \psi \cos \varphi - \sin \psi) + + b(\cos \psi + \epsilon \sin \psi - \cos t \cos \varphi - \epsilon \sin t) + (\cos t - \cos \psi \cos \varphi)^2 + + \cos^2 \psi \sin^2 \varphi + (\sin t - \sin \psi)^2.$$

Since $\cos t + \sin t - \cos \psi \cos \varphi - \sin \psi \ge \cos t + \sin t - \cos \psi - \cos \psi$ $-\sin \psi = \sqrt{2} (\sin (\pi/4 + t) - \sin (\pi/4 + \psi)) \ge 0$, it is clear that if the coefficient of b is nonnegative, then (21) holds. Next, we suppose that

(27)
$$\cos \psi + \epsilon \sin \psi - \cos t \cos \varphi - \epsilon \sin t < 0.$$

It follows that $\epsilon = +1$.

We will prove that $\rho(x^* - y_1^*) \in K_u$ and

 $\rho(x-y) \notin (-K_u)$. From these it will derive $\langle x-y, x^*-y_1^* \rangle \ge 0$ and

finally (21).

Relation $\rho(x^* - y_1^*) \in K_u$ is equivalent to the system $\sin t \ge \sin \phi$. $(\sin t - \sin \psi)^2 \geqslant (\cos t - \cos \psi \cos \varphi)^2$. The first inequality is obvious. Concerning the second one, let us remark, in view of (27), that it suffices to have $(\cos \psi - \cos t \cos \varphi)^2 \ge (\cos t - \cos \psi \cos \varphi)^2$, that is $\cos^2 \psi$ $=\cos^2 t \geqslant \cos^2 \varphi$ ($\cos^2 \psi - \cos^2 t$). But this inequality is clearly true.

Next, if we should have $\rho(x-y) \in (-K_u)$, then $b \ge a + \sin t$ -sin ψ and $(\sin \psi + b - \sin t - a)^2 \ge (\cos t + a - \cos \psi \cos \varphi - b \cos \varphi)^2 + a - \cos \psi \cos \varphi - b \cos \varphi$ $+(\cos \psi + b)^2 \sin^2 \varphi$.

The last inequality is equivalent to

$$f(b) = 2b \ (\sin \psi - \cos \psi - \sin t - a + a \cos \varphi + \cos t \cos \varphi) + \\ + (\sin \psi - \sin t - a)^2 - (\cos t + a - \cos \psi \cos \varphi)^2 - \\ -\cos^2 \psi \sin^2 \geqslant 0.$$

Since $f(a + \sin t - \sin \phi) < 0$ and the coefficient of b is negative, we

obtain a contradiction. Therefore, $\rho(x-y) \in K_n$ as claimed. To complete the proof of the third part of our Theorem it would be necessary to demonstrate relation (21), in addition in the cases corresponding to ||x|| < 1 and $||y|| \ge 1$. But since these cases can be more easily discussed, by using a similar technique, we omit the details about them.

REFERENCES

- [1] Browder, F. E., Problèmes non-linéaires, Les Presses de l'Université de Montréal,
- [2] Pascali, D., Shurlan, S., Nonlinear mappings of monotone type, Ed. Academiei --Sijthoff & Noordhoff Intern. Publ., 1978.
- [3] Precup, R., O generalizare a notiunii de monotonie în sensul lui Minty Browder, Lucrările seminarului itinerant de ceuații funcționale, aproximare și convexitate, Cluj-Napoca, 54 - 64 (1978).
- [4] Precup, R., Proprietăți de alură și unete aplicații ale tor, Dissertation, Cluj-Napoca,

After the _ 1 min) _ distribut desire i-

Received 3.X.1985 Liceul de Informatică Calea Turzii 140—142 Galea Turzu 140 — 142 3400 Cluj-Napoca