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1. Let X and Y be two linear spaces, ¢ .,.) : ANY - R a bilinear func-
tional, K < X a convex cone (i.e. K K < K and ok — K for any
a > 0), I* the polar cone of K, that is K* = {ye ¥ ; (z, yy = 0 for
all € K} and let 4 be an operator from X into Y.

The operator 4 is called monotone if

(1) (e — @'y, Ao — Ax’y > 0 for all z, '€ X
and is said to be (0) — monotone it
{2) Ax — Ax’ e K* for all 4, '€ X such that ¢ — o' ¢ K.

In our previous paper [3] we have defined and studied the larger
clags of the K-monotone operators.

Definition ([3]). The operator A : X »Y is said to be K-monotone if
(B3) (w —a'y Aw — Aw'y > 0 for all @, o' € X such that @ — o' € K.

The monotonicity, (o)-monotonicity and K-monotonicity properties
can be extended to multivalued mappings.

Obviously, any monotone or (o)-monotone mapping is a. K-mono-
tone one, Therefore, the study of the K-monotone mappings is important
Tor a synthesis of some results in monotone and in (¢0}-monotone mappings.

In the papers [3], [4] we have proved that if the convex cone K
of a reflexive Banach space X has non-empty interior, then some well-
known results in the monotone operators theory, about maximality, local
boundedness and demicontinuity can be extended for K-monotone map-
pings from X into its dual space X*, Moreover, if K has non-empty interior
with respect to the weak topology on the reflexive Banach space X, then
each K-monotone, K-hemicontinuous and coercive operator A from X
into X* is surjective (A is said to be K-hemicontinuous provided that for
every we X and w € K the map t—A(x | tu), t € R, is continuous in origin
with respect to o(X*, X)-topology of X*).

The aim of this paper is to give an example of K-monotone operator
which is neither monotone and (essentially) nor (o)-monotone.
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2. In what follows X is a real Hilbert space, ¥ = X and the bilinear
functional ¢.,.» is the scalar product on X. Denote by |- | the norm in
X induced by the scalar product, by || | an arbitrary norm in X, equiva-
lent with |- || and by € a nonvoid closed convex subset of X.

The mapping B = B(|-|'; 0), B:X —>2%¥ assigning to each ge X
the subset {ye O ||lo — y| = ini le — 2]’} is called the best approxima-

€

z
tion mapping by elements of ¢ and with respect to the norm |- .

Since the space (X, ||-]') is reflexive, we have Bz # @ for all e
€ X. Moreover, if the norm |- ||’ or the subset C is strictly convex, then
for each e X the subset Bz contains a unique element denoted by o*;
in this case the mapping B is an operator from X into X.

It is well known that the operator B(|. ||; €) is monotone for every
nonvoid closed convex subset C.

For other norms |- || the operators B(]|- [I'; C) can be not monotone,
but in some additional geometrical conditions imposed to the norms and
to the subsets C, they can be (o0)-monotone or only X-monotone with
regpect to certain cones K.

In what follows let us consider the strictly convex set ¢ = {ze X ;
lzll < 1}, a fixed element w e X, |u| =1 and the norm | ||, associated
to u as follows :

(4) lzll, = el i Ko, w)] = )2
=@ V2, it [Ku, @) < |al)}2,

where x, = & — <{ », uyu.
- If we put » =u,/||2, |, then we remark that :

() ol = llell, i <o) < l2l/)/2
=<@, V2, it <o, v)> |la||/J2.

Let us consider the following convex cone :

(6) K, ={zeX; (w uy>|z|/f2}.

If we assume that dim X> 2 and we write 4 in short instead of

B(||*|l,; ), then we can get the following main result.

THEOREM. 1°. The operators 4 and — A are not monotone.

2°. For any conver cone K < X with dim K> 2, the operators A
and — A are mnot (o)-monotone.

3°. The operator A is K, — monotone.

3. For proof we need some lemmas :

LEMMA 1.  For any wx € X, the best approximation element x*
of @ by elements of C, with respect to the norm || - |, belongs to span {x,u}.

Proof. Suppose that for some z € X, the best approximation ele-
ment o* of » by elements of ¢ and with respect to the norm | -||,, does
not belong to span {z, u} = X,. Then we may find z** € span {x, u, 2*}
such that #** s g%, (u, 2% — &™) = (o, o* — 2**) =0 and d(2*,
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X,) = d(a**, X,), where for some 2z € X we denote d(z, X,) = inf { ||z —
=yll; y e X} It follows that |o**| =|lz*| =1, |lo— z**| =|z— 2* ||
and <u, @ — &™) ={u, » — 2*). Therefore, ||z — a**|,=|lz — &*|,,
which contradicts the uniqueness of the best approximation element
by elements of the strictly convex set ¢, with respect to the norm I Il

LEMMA 2. Let e X, |z|>1.

1°. If weK, U (— K,), then x* = a/|z].

2°. If w¢ K, U (— K,) and & — a,/|lz,]| ¢ K, U (— K,), then z* =
= mu/”wu”

3 If w¢ Ky U (— K,) and o — n,/llx,) € K, U (— K,), then z*
is the wunique element satisfying the following conditions :

¥ = (aM|lzul)) @0 -+ A — a)a for certain «, 1€ [0, 1],

(7 K, & —a*)| = llo — «*|I/J2,
fle* || = 1.
Proof. 1°. Let we K, U (—K,), |#| >1. Then 5 — ol || € K, U
(—If,) and therefore |lo — @/|lz|l, =|o—a/|z| |. Since |o—afllal|| <
e — yl tor every ye C with [yl =1, as we can easily see, and since

le —yl < llo —yll., one obtains & — &/llz|],< |z — y|. for every
ye C with |y| = 1.

. 2.° In what follows we denote by v the element ,/||x,|. From &—
—0v¢X, U (—K,) we deduce that & --» = rz, where A >0, ||| < 1
and (v, 2) = 1/f/2. We have |z], =1 and [& — o]}, = . Now we bix
any o € span {®, u} n C. If we denote A = |z —v|,, then we have

W22 Ko, 3 —0)] = (v — B+ ) |=
=114+ M2 — <, o)l L MV2 — Ko, 8] | = M2

because |{v, v)|< 1. Thus A> ) and since v was arbitrary in span {@) n
n 0, it follows by Lemma 1 that g* = ».

3°. Applying Lemma 1 we will look for #* in the two-dimensional
subspace X, = span {@, u} equipped with the orthonormal basis (v, Uk
Using coordinates we may write @ = (|lz|cos6, ||lz||sind), o] > 1, —n <
< 0 < 7.
Since v = @,/ |z, || We can see that 0] < w/2 and taking into account the
inequality [<u, #)| < |&|//2 we get that |6] < w/4. Also, 6 # 0.
Indeed, otherwise (i.e. 0 = 0) we should have # = |&|jv and congequently
@ —v= (o —1)v¢X, U (—K,), a contradiction, Therefore, 03 0.
Replacing, if necessary, the basis (v, u)by (v, —u) we may asgume, with-
out loss of generality, that 0 < 6 < n/4. On the other hand, from
x —wvell, U (—K,) we easily find that

(8) cos — sinb < 1/]2.

Since each element z€ X,, ||z = 1 can be uniquely written in the
form z = » — My, where » >0, ye X, and |ly|| = 1, we will look for g*
in the form o* = o — Ny*)y*, where A(y*) >0, y* e X,y llw*]l = 1. Then
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lz — &*|l,= A»*)[ly*|l, and so it remains to solve the following probiem
of minimization in X, of the function

{9) Moy ey v € X,
with the constraints
(10) le — My)yll =1, xy)>o0, |y| =1.

Let us remark that constraints (10) are equivalent to

@D A%y) — 2@, A+l =1 =0, wy)>0, |y| = 1.

Since |lz> — 1> 0 it follows that the necessary and sufficient conditions
in order that the equation in A(y) from (11) has a positive solution, are :

(12) @ ¥ — > +120, <, y)>o0.
In these conditions the minimum value of My) is
13)  My) =<, 9> — V<o 9)* — [alF +1 = |lwll cos (¢ — 0) —
— V1 —llw® sin?e = 0) = ([l — 1)/(Jlz]| cos(t — 6)-+
+ V1 —Jla[’sin¥z —0)),
‘where (cos ¢, sin t), —w <t < m, are the coordinates of .

We will prove that the unique solution of the problem (9)—(10) is
obtained for y* = (1/)/2, 1/|/2), that is

1) M)y ll > 2y*) ly* |l for every te (—m, n], ¢ % n/d.

Let us denote for simplicity o = lel. Then the system of inequali-
ties (12) is equivalent to

(15) cos(t — 6)> Va2 — 1/a
which gives
(16) 6 —arccos [a® —TI/a< t< 0 4 arccos [a? — 1/a.

To prove (14) we will consider more cases :

Case 1. Let 0 —arccos |[a? —1ja <t < —xnf4. Since 0 < 6 <
< m/4 we have |cos ¢| < 1//2, that is [Cy, v)| < 1/J2. So, according
On the other hand 0 < cos (6 — t) <cos (nf4 — 0) and using (13)
we see that Ay) > A(y*). Therefore, in this case, relation (14) holds.

Case 2. 1iet —x/4 < ¢ < m/4. Then cos ¢ = (y, v) >1/J2 and con-
sequently, by (5), llyll, =12 cos ¢, while [y*|, =1 =2 cos n/4. Now,
let uvs denote
S@) = (a cos(t — 0) — lf;‘*cos%t —0)— a? 1) cos t. According to (13)
we see that for —m/4 < ¢ < n/4 inequality (14) is equivalent to

(17) o J@) > f(w)4).
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e prove (17) we will consider two subcases :
Subcase 2a. Let —n/4 <t < 0. We will prove the inequality

(18) fo)>1(8),

or equivalently the following one
(19) @ sin 4 sin (0 —¢) + cos 6> cos ¢ | acos(f— 0) —a®+1

for —gn/d4 <t < 0.

Tirst we note that the left-hand side of expression (19) is nonnega-
tive. This is clear for 0 < ¢ < 0. Now, if we suppose that —mfd <t <0
and we take into account that 0 < sin (0 —t) < 1/a (in view of (15)),
then we obtain sin ¢ < ¢ sin ¢ sin (0 —1) < 0. But, cos 0 -}sin ¢ >0
because 0 < 6 < w/4 and —m/4 <t < 0. It follows that the left-hand
side of (19) is nonnegative even for —mfd <t < 0,

Consequently, we may use the standard technique of eliminating
the radicals and so, inequality (19) can be reduced to

g a sin? (0 —¢) 4-sin (0 —1) sin (6 4 4)> 0

which ig fulfilled for —n/4 <t < 0, as we can easily sec.
Subcase 2b. Let 0 < t < /4. We will prove that f'(1) < 0 for every
te [0,:mn/4), that is

' oa%in (1— 0) cos (20— 0)- sin t<C asin (2t — 0) V1 = a%sinz (t — 0)
After some simple transformations this inequality can e reduced to
cos 0 —octg ¢ sin 0 < 1/a

which according to (8) is satistied because ctg t> ctg nf4'=1. Thus,
F @) <0 forx0 <y w/4 and in consequence .
(20) J) > f(n/4) for every te [8, n/4).
i Now from relationg (18) and (20) we may infer that inequality
(17) is true for every e (—mn/4, =/4),
Case 3. Let njd4 <1< 6 arceos Va* =1 Jq.
Frots 0 < m/d — 0 <3 — 0 < arccod Var —Tla < 72, it follows that
cos (t — 0) < cos (n/4 — 0) which, by (13), yields A(y) > Ay*). e
On the other hand, since /A<t < m/d+ n/2 we have|[{y, v)|=|cos t]<
<'1//2. Thus, by (), one has |ly|l, = [ly|| =1 = lly*{l.. Theréfore, rela-
tion (14) holds, ’
Finally, it is easy to see that g* — 5 — My *yy*
is the unique solution of systemn (7). The proof of Lemuma, 2 is now complete,
' “]._%'oof of Theorem. 1°. Let w € X such that lzll = 1 and (e, Uy =
=1//2. We set Tn = ¥ - Az, where A> 0.
It is easy to see that ¢ K, U (— K,) and g, — v €K, U (— K,).

According to Lemma 2.3° we have Az, = v. On the other hand Az — .
Therefore,

G—=2 Awp— Aoy =<0+ (A~1) @, v —a) — (1 — 1/)2)@ — ).
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This number is positive for 0 < A < 2 and negative for A > 2, Hence,
the operators 4 and —A4 are not monotone.

2°, Let K be a convex cone of X with dim K > 2. We will consider
the following cases :

Case 1. Assume that ri K  (int K,u (—int K,))# @, where by
int K, and ri K we have denoted the interior of K,, respectively the rela-
tive interior of K.

Then there are @, y € K with @ % ¥, [[#|| = |ly|| = 1, such that &, y € K,
or z, y € (—I(,). It follows that # |+ y€ K, U (—K,) and |jo |y >1,
hence, applying Lemma 2.1°, A(z +y) = (2 4+ )/ |lz 4 y].

Also, Az = ». Now, it is easy to see that

@, (@ +y)/lo+yll — o) <0 and <y, * — (@ +9)/llz +y|) <0, that
is A +y) — Az ¢ K* and — A(w +vy) — (—Aw) ¢ K*, although (»--
+¥) —2 =y e K. Hence, the operators 4 and —A4 are not (o) — mono-
tone with respect to I and K*,

Case 2. Assume that there exists # € K, with |z| = 1, such that
0{|{®, wy| < 1/|/2. Then, we may find A>1 in order that the element
;) = 7\97" satisfies #, —ov¢ K, U (—K,). It follows that Az, = v». Since

#y, —w=(N—1Lwe K and dw, — Ae =v — g ¢ K*

because (@, v — #) = {®, v) —1 <0, we conclude that A4 is not (o)-
monotone.

If in addition {x, 4) >0, then we may find ;>0 such that the
element y = u 4 px satisties (y, u) = |ly[|/f2. We have Ay = Y/l ||
and: Ay = u. Since y —y =pre K and —Ay — (—Au) = —y/lly| +
+ w¢ K* becanse as we can easily see {m, —y/|ly| + ) < 0, we may
conclude that —A is not (o)-monotone.

If {w, u) < 0, then one proceeds in the same way taking y = « —
— ww, with u >0,

Case 3. Suppose that (2, u) = 0 for every ze K. Since dim K > 2,
we may find @, y ¢ I{, such that  # y, |z|l = |lyll =1 and |z - y}|> 1.
Applying Lemma 2.2° we obtain A(z + y) = (¢ +9)/lle + y|. Also,
Ax = ». Now, we easily observe that (@, (¥ 4+ y)/llz 9| — ) < 0 and
Y, —(@-+y)/lle +yl + ) < 0 and since (# +y) — 2 =y & K we may
infer that A and —A are not (o)-monotone.

Thus the second part of Theorem is proved.

3°. Let », ye X, such that w# y, # —ye K, U (—K,) and Ax#
# Ay. We will prove that

(21) {w—y, Ao— Ay)> 0.

Assume for the beginning that [#f> 1 and |y| > 1. We will con-
sider more cases :

Case 1. Let #, ye K, U (—K,). Then Ax = z/|z|, Ay = y/|y|l
and we immediately see that relation (21) is fulfilled.

Case 2. Suppose that w, y¢ K, U (—XK,) and o — a,/|z,l, v —
— Yo/ 1Yl ¢ K, U (—K,). Then, by Lemma 2, Ag = s*=w,/|r,| and
Ay = y* = Yul 9l :
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In the 3-dimensional subspace span {&*, y* «} we may use the following
coordinatizations : a* = (1, 0, 0);

= (0, 0, 1); y* = (cos ¢, sin ¢, 0), 1€ [0,2%);

2= (a, 0, e(f@ —1)), a>1, |«|<1l; y=(bcost bsin t B —1)

-

b>1, |B| < 1. Then, we obtain (# —y, Aw — Ay)= (a 4 b)(1 — cos 1)>

2 0, which proves (21).
Case 3. Let w, y ¢ K, U (— I,) such that » — %, /||=,| € K, and y—
— Yul [yl ¢ I, U (—K,). Then, Ay = y* =y,/|ly, || and Aw = z*, where

-* 18 the solution of system (7). In the subspace span{z*, y*, u} we may

use the following coordinates : * = (cos 1, 0, sin 1), 0 < ¢ < /4,

y* = (cos o, sin ¢, 0), 0< ¢ < m;

% = (cos t +a, 0, sin t +a), a= 0; y = ((1 4 b)cos ¢, (L -}b) sin o,

ab), b > 0, |a| < 1. Also we denote y¥ = (cos ¢, 0, 0).

We have (z— y, a* — y*)= 2(1 — cos ¢ cos ¢)-+ a(cos ¢ sin { — cos ¢) +
4+ b1 — cos i cos ¢ — asini).

Since cost 4 sini — cos 9> Cost + sint —1 > 0 we observe that if

1 —costcos ¢ — asint> 0, then (21) is satisfied.

Next we will suppose that 1 — cos?cos ¢ — asin#<< 0. Then,
>0 and

(22) 0 <1 —costcos ¢ <<sind.

We have (v —y, a* —y*) =(@ —y, a* —y¥) 4 (L + b)sin 2.

Therefore, (o — ¥, #* — y*) > (@ — y, * — y¥) and so, to prove (21)

it is sufficient to show that {(# — g, 2* — »¥) > 0. For this, we will prove

first that o* — ¢ € K, = K} and after, that « — y € K,,.

Indeed, using (22), we deduce that sin%>1 — 2costcos ¢ |
-+ cos? cos?@ > cos?t -+ cos?o — 2 oS { cos o, 4
‘Therefore, sin ¢>((cost — cos ¢)? -~ sin2)/2/J2, that is a* — y} € K,,
where we have taken into account that a* — y* = (cost — cos ¢, 0,
sin ).

Next, we have to show that » — y ¢ (— K,). Suppose that this is
not the case, i.e. ¥ — y e (— K,). Then,

«b —sint — a>|lw — y||/f/2, which is equivalent to the system
consisting of the following inequality

{23) bz(sint 4 a)/a

and of the inequality obtained after the elimination of radicals

(24)  f(b) = %1 — o?) - 2b(1—cos t cos ¢ — acos o + asint | aa) +

+ 2 cos % + 2a(cost — sint) — 2 cos ¢ (cost + a) < 0.

To derive a contradiction we will prove that this system in & has no
solution. ;
If « =1, then since 1 — cos¢cos ¢ — acos ¢ 4 sint 4+ a>0 and

J(sint - a) >0, it is clear that system (23)—(24) has no solution.

Next, let 0 < « <1. We have f((sin ¢ - a)/a) ==a*(l — 2 « cose -
+ o) 4 2a(« cos (1 — cos ¢) + (o sin #)(1— a cos ¢)— a(l— «) cos {)+
+ 8in % -+ 2« sin #(1 — cos ¢ cos @) |- a*(1 — 2 cos ¢ cos ¢ | cos?t).

5—c. 2571
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Since (« 4 sin 1)1 — « cos o) > a(l — a)> «(1 — o) cos ¢, 'we ' infer
that f((sin ¢+ a)/«) > 0.
On the other hand, the demi-sum of the roots of f(») does not exceed
(sint -} @)/, a8 we can easily see.
Therefore, f(b) >0 for every b satisfying (23). ‘
Consequently, system (23)-—(24) has no solution, This contradiction shows
that . & —y ¢ (—I,). -

Case 4. Let us assume that z e K,, y ¢ K, U (—K,) and y — I
é]f” U (_Ku)' i ) :
Then, we have dw = w* = g/|lrl| and Ay = y* = y,/ . |l. Passing” to
coordinates in a 3-dimensional subspace of X containing x*, y* and ,
we may write : '

Y w=(0,0, 1); #* = (cos 1, 0, sin t), n/d < t < 7f2;

Vy* = (cos o, sin @, 0), 0< o < w; @ = (acos t, 0, a sin t), ¢ =1 ;

¥y =1{(1+0b) cos o, A -b) sin o, ab), b=0, |a] < 1.

Also, consider y¥ = (cos ¢, 0, 0). We have

{w —y, o¥ —y*) = a(l — cos ¢ cos @)+ .
+b(1 —cos ¢ cos ¢— o sin {)-1— cos { cos @.
If the coefficient of b in.this expression is nonnegative, then it is clear
that relation (21) is!satisfied. Next, let 1 — cos t cos @ — o« sin t <0,
It follows that 0 < « < 1 and (22) holds. Since! <& — y, a* — y%) >
z (e —y, ¥ — y¥), inorder that (21) be true it is sufficient to prove that
(w —y, »* —yF> > 0. As at Case 3, oneshows that a* — yF e K, = K¥,
Next, the relation # — y e (—IK,) is equivalent to the system :
b>a Sint/oc i
DAL — o)} 20(1— « cos t cos @ - aw sin t) -+ 14 2a? lcosZ —
—a? — 2q¢ cos t cos @ <L 0,
which, as at Case 3, has no solution. Therefore, x'— y € I,.

Case 5. Supposc that we K, y¢ K, U (—K,) a-nd_ Y - 1’1;/”:’/1;_” €
€ {,U(—I(,). Then Az = #/|x| and Ay = y*, where y* is the solution
of (7). Now, we may use coordinates as follows: #* = (cos ¢, 0, sin 1),
nfd <t < nf2; uw=1(0,0,1); = (w¢cost 0, «sini), a>1; ;
y* = (cos & cos o, cos ¢ sin @, 8in U), —wd < b < w4, 0< oL W
Yy = ((cos ¢+ b) cos o, (cos & 4 b) sin o, sin b --¢eb), b =0, |e| =1,

ed = [§]. Let yff =(cos ¢ cos o, 0, sin ).

We have
(20) <m —y, ¥ — y*) = (¢4 1)1 —cos ¢t cos b cos o —sin ¢ sin P)-+

4 b(cos '+ & sin § — ¢ sin ¢ — cos ¢ cos o).
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Since (cos? cos ¢ cos o-4sin ¢ sin  $)2 < (cos? t4-sin? f) ((cos?d cosZo -
+sin2d) < 1,

we may infer that 1 — cos 7 cos ¢ cos o —in ¢ sin ¢ > 0. Now, if
the coeflicient of b in formula (25) is nonnegative, then it is ohvious that
(21) is true. Next, we assume that

(26) Co8 -~ e 8in ¢ — e sin ¢ — cos ¢ cos ¢ < 0.
Let'us vemark that relation (26) is possible only for = — +1.
1t suffices, in this case again, to justify the inequality ¢z — Yy oF —yi) =

=0 and for thig, to show that
¥ —yie i, and w— y ¢ (—K,). The first of these relations ig equivalent
to sin ¢t —sin & > ||o* — y#||f)2, and, after elimination of radicals, to
the system of inequalities: sin ¢ > sin ¢, (sin ¢ — sin )2 = (cos ¢ —
—cos 1 cos @)% The first inequality is obvious; to verify the second
one it suffices, by (26), that (cos J — cos ¢ cos @) > (cos t — cos ¢
cos @) or equivalently cog?y — cos® > cos? o(cos?h — cos?t), which is clear,
Therefore, p* — y¥e K, — K},

Now, assume that @ — y e (—1IK,). Then, it follows that b > g sin {—
—&in ¢ and

(SN &+ b — asin )2 = (@ cos ¢ —cos § cos @ — b cos )24

~(cos 'y -+ 0)? sin2e.
This Iast inequality can be written cquivalently :
J(0) = 2b6( sin & —cos ¢ — asin ¢ 4 acos 1 cos @)
4+ (sin ¢ — asin 1)? — (acos ¢ — cos ¢ cos ©)* — cos?y sin20 =0,

Observing that the coeflicient of b is negative and that fla sin ¢ — sin §)<
< 0, one dexives a contradiction.
Conzequently, @ — y ¢ (—IXK,).

Case 6. Let 2, y ¢ K,U(—I,) such that

&z — w-u/”mu” = ]fu Y (4I(u) and ¥y — .7/u//”’/u“ € I(u U (_I(u)

Now, one has Az = 2% and Ay = y*, where #* and y* are given by (7).
Using coordinates we may identify : « = (0, 0, e), lpl =13 a* = (cos {,
0, sin t), 0 < & < w/d; y* = (cos ¢ cos @, cos ¢ sin @, sin ¢), |b|<n/4,
PI<?, 0 < o<m; ® = (cos 1+, 0, sin { 4 a), ¢ > 0; ¥ = ((cos ¢+
-+ b)cos @, (eos ¢ 4 b)sin ¢, sin ¢ - €b), b = 0, le| = 1, b =|d].
Denote y% = (cos ¢ cos o, 0, sin ¢). We have
(w — 9y, o* — y*y = a(cos t + sin ¢ — cos Yeos o—sin §)+
+0(cos ¢+ e sin § —cos ¢ cos o — ¢ sin 1) - (cos {— cosy con ¢)*-
- co8?¢ sinfe +- (sin ¢ — sin ¢)2.

Since  cos ¢ +sin 1 —cos § cos o —sin ¢ = cos ¢ + sin ¢ — cos ¢ —
—sin ¢ =)2 (sin (n/4 + 1) —sin (w/4 + ¢)) > 0, it is clear that if the
coefficient of b is nonnegative, then (21) holds. Next, we suppose that

(27) CoS ¢ = esin ¢ — costcos ¢ — esint < 0.



162 R. PRECUP
10

It follows that ¢ = -} 1.
We will prove that  o(z* — y*) € K, and
p(e —y) ¢ (— K,). From these it will derive {(@—y, #*— y¥) > ¢ and
finally (21). T
Relation o(a™ — yf) € K, is equivalent to the system sin ¢ > gin 4,
(sin ¢ — sin ¢)* > (cos ¢ — cos ¢ cos @)% The first inequality is obvioy
Concerning the second one, let us remark, in view of (27), that it suffices
to have (cos ¢ — cos t cos @)2>(cos ¢ — cos § cos o)% that is cog? J—
= C08% > cos®¢ (cos®y — cos?t). But this inequality is clearly true,
Next, if we should have p(x —y)e (—K,), then b > a L sin § —
—sin ¢ and (sin Y- —sin t—a)? = (cos t-+a—cos ¢ cos p—p CO8 @)1
—+(cos 4 b)%ino. |
The last inequality is equivalent to =

8
J) =2b (sin ¢ —cos b —sin ¢t —a -+ a cos 9 4-cost cos )|

—+(sin ¢ — sin ¢ — @)2 — (cos t+ @ — cos ¢ cos ¢)2—
—cos? ¢ sin? = 0.

Since f(a - sin ¢ —sin ¢) << 0 and the coefficient of b iy negative, we.
obtain a contradiction. Therefore, o(w — )€ I, as claimed. '

To combplete the proof of the third part of our Theorem it would be.
necessary to demonstrate relation (21), in addition in the cases correspond-
ing to [lz]l <1 and |yl = 1. But since these cases can be more easily.
discussed, by using a similar technique, we omit the details about them.
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