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1. Let I be a locally convex Hausdorff space over veals and X < R
a compact convex set. Let Prob () be the set of all probability Radon
meagures on X, If u e Prob(X) let 7(pn) be the barycenter of p. and e(u) =
=cl (conv (supp w)); then »(w) € o(r) (see [4, Proposition 1.2]). Let 3,
denote the Dirac measure at o € .

TororEM 1. Let pe Prob (X) and let fe O(X) be a concave func-
tton. Then :

1) p(f) < fr(p)),

2) If w(f) = fr(w)), then f s affine on o).

Proof. 1). For proofs and generalizations of this assertion see [4,
p. 25, [3, p. 2757, [2].

2) We can assume without 1oss of generality that »(pn) = 0 and f(0)=
=0; hence p(f) = 0.

(i) Let ge O(X)and M = X. If fg(p,2,-}-.. . p,2,)=pg(a)+. ..+
+ pugla,) for all w > 1, all p, = O with p,--...4-p, = 1 and all z,¢ M,
then ¢ is affine on el(conv(M)).

We omit the easy proof of this fact.

(i) Tf w e supp u, # # 0 and V is a neighborhood of z (in B), then
there exist yeV ndX, ze X, ¥y % = and ac (0,1) such that 0 = ay -+ -
T (I —a)z and f iy affine on conviy, z}.

Indeed, we can assume that V is closed, convex and 0 ¢ V. Let a =
=wV n X). Then 0 < ¢ < 1. IFor each Borel set B = X let us denote

AB) = (1aw(B n V), nB) = (1/1 — a)u(B n (X\ V).

Then v, e Prob(X), p=av 4+ (L —a)x, v(X n V)=1. Let y and
2 be the barycenters of v and 2. We have veVon X,0=0ay Q01 — a)
Md g £ 5, Moreover 0 = (0) = flay + (1 — a)) > af(y) + (1 — @)f(z) >
Z0v(f) (1 — a) M(f) = w(f) == 0. Therefore

1) flay + (1 — @)2) = af(y) - (1 — o) f(z)
The funetion f is concave on conv {y, )} and (1) holds for a eertain
@€ (0,1); it follows eagily that f is affine on conv {y, 2}.
The 1) Let @, ...,¢, € (suppp) {0}, pyy..p, > 0, E p, =1.
N fZpw) = Ip,f(m,).
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Indeed, let ¢ > 0. There oxists a circled convex neighborhood ¥V of
0 such that (f(@) — f(y)| < ef2 for all @, y e X with o ye V. It follows
from (ii) that there exist

i€ (w4 V) n X, 2¢ Xy ¥ # 2, w;€ (0,1) such that
0 = ay; + (1 — )2, and S s affine on conv {5 3. Let o = min {ayf

A —a):d=1,.. %) Then ¢ >0 and 0e conviy, — ay,} < conv{y,, z;}.
This yields

(2) H=ay) = —af(y,), i =1,.. .0
Trom (2) and the concavity of f we deduce

Zpifly) = —(1a) f(—a pg,) > JEpays) = Zp; fy,).
Therefore

(3) JGepan) = 2 p. f (3,)

from y;, — w,e ¥V and Lpiy — Z ps e Vil follows
(4) ) —fl)l < /2, i=1,...n
(5) VR Pay) — (2 pa)| < /2.

_ Now (3), (1) and (5) imply IfGp) — % Pif ()] < e, Since this
holds for each ¢ > 0, f(Zpww,) = % p,f(n,;)

(iv) Suppose that 0e (XN\supp ) u cl(supp ®\10}). Then ¢(p) = el
(conv (suppp)) = cl{conv(supp ENA0})). By (iii) and (i), f is affine on e(w).

(v) Finally, let 0e supp p. be an isolated point of supp . Then
B = v+ ady, where ¢ = p ({0}) =0 and v is a positive Radon Ireasure
on X, O ¢supp v. The case ¢ — 1 is trivial, hence let ¢ < 1, Then ) —
= (L/(1 — @))v is in Prob (&), 7(h) =0 and A(f) = 0. By (iv), f is affine
on o(3). Obviously ¢() < (). Conversely, »(1) =0 implies 0 e ¢(2);
therefore supp p — {0} U supp » < ¢(2) and thus o) < ¢(n). It follows
that e(p) = e(2) and f is affine on e(p).

2. Let now 4(X) be the space of all continuous affine functions on X
Let I be a family of concave functions in C(X). We denote by H the
uniformly closed linear subspace of O(X) spanned by A(X) and F. Let
Ch(#) denote the Choquet boundary of H.

CorROLTARY 1. Ch(H) coincides with the set of those me X for which
whenever y, ze X,y + 2 & = (1/2)(y 2), there exists fe F such that fl@) >
>(A2)(f(y) + f(=)).

Proof. Let € X with the above property. Let p.e Prob (X), p=3,
on . By Theorem 1, every JeI' iy aifine on ¢(w). It tollows that is an
extreme point of ¢(p). By a result of H. Bauer (see [4, Proposition 1.47])
. = 3. Consequently @ e Ch(H).

The other inclusion is immediate.

CoronLArY 2 ([5]). Suppose that I contains only one function I
Then Ch(IH) = X iff fis strictly concave on X. :
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Let H" be the topological dual of IT endowed with the wealc*-topology.
As usual we consider the state space S of H, which is the compact convex
sel. 8§ ={ope H': ¢ positive, o(1) = 1}

If we X, let j(w): H-R, J(@)(h) = h(z). Then j : X=jX)c Sis a
homeomorphism and o — lacjrac A(8)} (see [1]).

Let P be the class of the compact convex subsets 4 < X such that
all fe I' are affine on A, Let Kor(II) denote the Korovkin closure of H
(see [1]).

THEOREM 2. The function ¢ e O(X) ds in Kor(H) iff g is affine on
every 4 e P,

Proof. Let us denote
=1 y):peProb (X)), yej(X), r(p) =y
Then (see [1]):
(6) g€ Kor(H) it p(gej-1) = goj-1(y) for all (u, y)e T

Suppose that ¢ is affine on every e P, Let (p, y)e T. Let ve Prob
(), v(w) = p(u-j-1) for all ne O(X). Tt is easily seen that, 7(v) =
= J~y) and v(f) = f(»(v))for each JeI'. By Theorem 1, cach fe I is affine
on ¢(v), hence ¢(v) e P, Tt follows that ¢ is affine on ¢(v). Then (g o j=1) =
= Y(g) = g((v)) = g o j-Yy). We deduce from (6) that ge Kor (I).

Let now ge Kor(H), Let A e P, ve Prob(d); we have to prove
that v(g) = g(r(v)). Let t € Prob(j(X)), w(v) = v(v o j) for all » e Q(j(X)).
Let ns denote y = J(r(v)). Then #(w) = y. This vields (u, y)e 7. Tt follows
from (6) that vig) = u(go j-1) = go j-Yy) = g(r(v)).

Remark. Theorem 2 (when I contains only one element) was annonn-
ced in [1] and was proved there in the special case when X s & compact
convex subset of [n,
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