MA THEMATICA — REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 15, N° 2, 1986, pp. 163-165

SETS ON WHICH CONCAVE FUNCTIONS ARE AFFINE AND KOROVKIN CLOSURES

I. RAȘA (Cluj-Napoca)

1. Let E be a locally convex Hausdorff space over reals and $X \subset E$ a compact convex set. Let Prob(X) be the set of all probability Radon measures on X. If $\mu \in \text{Prob}(X)$ let $r(\mu)$ be the barycenter of μ and $c(\mu) =$ = cl (conv (supp μ)); then $r(\mu) \in c(\mu)$ (see [4, Proposition 1.2]). Let δ_{π} denote the Dirac measure at $x \in X$.

THEOREM 1. Let $\mu \in \text{Prob}(X)$ and let $f \in C(X)$ be a concave function. Then:

1) $\mu(f) \leqslant f(r(\mu)),$

2) If $\mu(f) = f(r(\mu))$, then f is affine on $c(\mu)$.

Proof. 1). For proofs and generalizations of this assertion see [4, p. 25], [3, p. 275], [2]. 2) We can assume without loss of generality that $r(\mu) = 0$ and f(0) = 0

=0; hence $\mu(f)=0$.

(i) Let $g \in C(X)$ and $M \subset X$. If $fg(p_1x_1 + \ldots + p_nx_n) = p_1g(x_1) + \ldots + p_nx_n$ $+p_ng(x_n)$ for all $n \ge 1$, all $p_i \ge 0$ with $p_1 + \ldots + p_n = 1$ and all $x_i \in M$, then g is affine on el(conv(M)).

We omit the easy proof of this fact.

(ii) If $x \in \text{supp } \mu$, $x \neq 0$ and V is a neighborhood of x (in E), then there exist $y \in V \cap X$, $z \in X$, $y \neq z$ and $a \in (0,1)$ such that 0 = ay + ay+(1-a)z and f is affine on conv $\{y, z\}$.

(1-a)z and f is affine on $conv\{y, z\}$. Indeed, we can assume that V is closed, convex and $0 \notin V$. Let a = 0 $=\mu(V \cap X)$. Then 0 < a < 1. For each Borel set $B \subset X$ let us denote

$$\nu(B) = (1/a)\mu(B \cap V), \quad \lambda(B) = (1/(1-a))\mu(B \cap (X \setminus V)).$$

Then ν , $\lambda \in \operatorname{Prob}(X)$, $\mu = a\nu + (1-a)\lambda$, $\nu(X \cap V) = 1$. Let y and z be the barycenters of ν and λ . We have $y \in V \cap X$, 0 = ay + (1-a)zand $y \neq z$. Moreover $0 = f(0) = f(ay + (1 - a)z) \geqslant af(y) + (1 - a)f(z) \geqslant av(f) + (1 - a)\lambda(f) = \mu(f) = 0$. Therefore

$$f(ay + (1 - a)z) = af(y) - (1 - a)f(z)$$

The function f is concave on conv $\{y, z\}$ and (1) holds for a certain $a \in (0,1)$; it follows easily that f is affine on conv $\{y, z\}$.

(iii) Let $x_1, \ldots, x_n \in (\text{supp}\mu) \setminus \{0\}, p_1, \ldots, p_n \geqslant 0, \Sigma p_i = 1.$

Then $f(\Sigma p_i x_i) = \Sigma p_i f(x_i)$.

Indeed, let $\varepsilon > 0$. There exists a circled convex neighborhood V of 0 such that $|f(x) - f(y)| \le \varepsilon/2$ for all $x, y \in X$ with $x - y \in V$. It follows from (ii) that there exist

I. RASA

MODERATE SCHOOL STATE OF THE PERSON STATE OF THE

$$y_i \in (x_i + V) \cap X$$
, $z_i \in X$, $y_i \neq z_i$, $a_i \in (0,1)$ such that

 $0 = a_i y_i + (1 - a_i) z_i$ and f is affine on conv $\{y_i, z_i\}$. Let $a = \min \{a_i/a_i\}$ $/(1-a_i): i=1,\ldots,n$. Then a>0 and $0\in\operatorname{conv}\{y_i,z_i\}$. Let $a=\min\{a_i\}$. This yields

(2)
$$f(-ay_i) = -af(y_i), i = 1, ..., n$$

From (2) and the concavity of f we deduce

$$\Sigma p_i f(y_i) \geqslant -(1/a) f(-a\Sigma p_i y_i) \geqslant f(\Sigma p_i y_i) \geqslant \Sigma p_i f(y_i).$$

Therefore

(3)
$$f(\sum p_i y_i) = \sum p_i f(y_i)$$

From $y_i - x_i \in V$ and $\sum p_i y_i - \sum p_i x_i \in V$ it follows

$$|f(y_i) - f(x_i)| \leqslant \varepsilon/2, \quad i = 1, \dots, n$$

$$|f(\sum p_i y_i) - f(\sum p_i x_i)| \leqslant \varepsilon/2.$$

Now (3), (4) and (5) imply $|f(\Sigma p_i x_i) - \Sigma p_i f(x_i)| \leq \varepsilon$. Since this holds for each $\varepsilon > 0$, $f(\Sigma p_i x_i) = \Sigma p_i f(x_i)$

(iv) Suppose that $0 \in (X \text{ supp } \mu) \cup \text{cl}(\text{supp } \mu \setminus \{0\})$. Then $e(\mu) = \text{cl}(\text{conv (supp } \mu)) = \text{cl}(\text{conv(supp } \mu \setminus \{0\}))$. By (iii) and (i), f is affine on $e(\mu)$.

- (v) Finally, let $0 \in \text{supp } \mu$ be an isolated point of supp μ . Then $\mu = \nu + a\delta_0$, where $a = \mu$ ({0}) > 0 and ν is a positive Radon measure on X, $0 \notin \text{supp } \nu$. The case a = 1 is trivial, hence let a < 1. Then $\lambda =$ $=(1/(1-a))^{\frac{1}{2}}$ is in Prob (X), $r(\lambda)=0$ and $\lambda(f)=0$. By (iv), f is affine on $c(\lambda)$. Obviously $c(\lambda) \subset c(\mu)$. Conversely, $r(\lambda) = 0$ implies $0 \in c(\lambda)$; therefore supp $\mu=\{0\}$ \cup supp $\lambda\subset c(\lambda)$ and thus $c(\mu)\subset c(\lambda)$. It follows that $c(\mu) = c(\lambda)$ and f is affine on $c(\mu)$.
- 2. Let now A(X) be the space of all continuous affine functions on X. Let F be a family of concave functions in C(X). We denote by H the uniformly closed linear subspace of C(X) spanned by A(X) and F. Let Ch(H) denote the Choquet boundary of H.

COROLLARY 1. Ch(H) coincides with the set of those $x \in X$ for which whenever $y, z \in X, y \neq z, x = (1/2)(y + z)$, there exists $f \in F$ such that f(x) > 0>(1/2)(f(y)+f(z)).

Proof. Let $x \in X$ with the above property. Let $\mu \in \text{Prob}(X)$, $\mu = \delta_x$ on H. By Theorem 1, every $f \in F$ is affine on $c(\mu)$. It follows that x is an extreme point of $c(\mu)$. By a result of H. Bauer (see [4, Proposition 1.4]) $\mu = \delta_x$. Consequently $x \in Ch(H)$.

The other inclusion is immediate.

COROLLARY 2 ([5]). Suppose that F contains only one function f. Then Ch(H) = X iff f is strictly concave on X.

Let H' be the topological dual of H endowed with the weak*-topology. As usual we consider the state space S of H, which is the compact convex set $S = \{ \varphi \in H' : \varphi \text{ positive, } \varphi(1) = 1 \}.$

If $x \in X$, let $j(x): H \to R$, j(x)(h) = h(x). Then $j: X \to j(X) \subset S$ is a

homeomorphism and $H = \{a \circ j : a \in A(S)\}$ (see [1]).

Let P be the class of the compact convex subsets $A \subset X$ such that all $f \in F$ are affine on A. Let $Kor(\dot{H})$ denote the Korovkin closure of H (see [1]).

Theorem 2. The function $g \in C(X)$ is in Kor(H) iff g is affine on every $A \in P$.

Proof. Let us denote

$$T = \{(\mu, y) : \mu \in \text{Prob} \ (j(X)), \ y \in j(X), \ r(\mu) = y\}.$$

Then (see [1]):

(6)
$$g \in \text{Kor}(H) \text{ iff } \mu(g \circ j^{-1}) = g \circ j^{-1}(y) \text{ for all } (\mu, y) \in T$$

Suppose that g is affine on every $A \in P$. Let $(\mu, y) \in T$. Let $\nu \in \text{Prob}$ (X), $\nu(u) = \mu(u \circ j^{-1})$ for all $u \in C(X)$. It is easily seen that $r(\nu) =$ $= j^{-1}(y)$ and $\nu(f) = f(r(\nu))$ for each $f \in F$. By Theorem 1, each $f \in F$ is affine on $c(\nu)$, hence $c(\nu) \in P$. It follows that g is affine on $c(\nu)$. Then $\mu(g \circ j^{-1}) =$ $= v(g) = g(r(v)) = g \circ j^{-1}(y)$. We deduce from (6) that $g \in \text{Kor } (H)$.

Let now $g \in Kor(H)$. Let $A \in P$, $v \in Prob(A)$; we have to prove that $\nu(g) = g(r(\nu))$. Let $\mu \in \text{Prob}(j(X))$, $\mu(v) = \nu(v \circ j)$ for all $v \in C(j(X))$. Let us denote y = j(r(v)). Then $r(\mu) = y$. This yields $(\mu, y) \in T$. It follows

from (6) that $\nu(g) = \mu(g \circ j^{-1}) = g \circ j^{-1}(y) = g(r(\nu))$.

Remark. Theorem 2 (when F contains only one element) was announced in [1] and was proved there in the special case when X is a compact convex subset of R^n .

REFERENCES

- [1] Bauer, H., Leha G., Papadopoulou S., Determination of Korovkin closures, Math. Z. 160, 263-274 (1979).
- [2] Boboc N., Bucur Gh., Conuri convexe de funcții continue pe spații compacte, Ed. Acad, RSR, Bucuresti 1976.
- [3] Meyer P.A., Probabilités et potentiel, Hermann, Paris 1966.
- [4] Phelps, R. R., Lectures on Choquet's Theorem, Van Nostrand 1966. [5] Raşa, I., On some results of C.A. Micchelli, Anal. Numer. Theor., Approx. 9, 125-127

Received 14.X.1985

Institutul Politehnic anggan Rogalog 18 3400 Cluj-Napoca, România