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ON THE HIERARCHY OF CONVEXITY OF FUNCTIONS
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In the first part of this paper we simplify the proof of the main
theorem of A. M. Bruckner and E. Ostrow from [4]. In the second part
we extend this result, simplifying also some proofs from our paper [8].

Let us denote the classes of continuous, convex, starshaped, respecti-
vely superadditive functions, by :

Ob) = {f: [0, b]-RR, f(0)= 0, J continuous}
K@) = {fe C®); flo 4 1 — t)y) < (@) -+ (1 — Of(y),
Vie(0,1), Va ye [0b])
8*(b) = {fe CO); ftw) < if(x), Vie (0,1), we [0,b]}
8(b) = {fe C); flw+ 9)> f(@) + f¥), Vo, 4, &4y e [0, bI}.

In what follows we need some well known results; (see [4]). They
are more general, but we prove only the form that we use.

LEMMA 1. If the convex function [ is differentiable, then fis non-
decreasing.

Proof. Let us suppose &> y. From the definition we have :
Yy +Ue — y)) — fly) < J@) — fiy)
e — y) z—y

which gives :
’ &) —
ry < 1@ = 1)
@ —y
Replacing ¢ by 1 — ¢, we obtain Similarly :
[(@) — f(y)
-y
LeMmA 2. The function f is starshaped if and only if f(®)/x is non-
decreasing.

Proof. If 0 < & < ¥, from f(ty) < tf(y) and t = 2/y we have : flo)<
<(2/y) f(y). Conversely, if 1e'(0,1), tw< & and so Jtw)/(tx) < f(@))x
gives the starshapedness of I

< f'(=@).
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TEvmA 3. If the fundiion f is differentiable, 'then il s starshaped if
and only if: f'(x) = f(@)/e. i} ; :

Proof. The function f(a)/# is nondecreasing if and only if:

[f(w)z) = [f'(®) & — j(z)]z* = 0.
Ligdvnia 4. For any b >0 hold the inclusions :
K@) = S#() < S(b).
Proof. a) Tt fe K(b), t& (0,1) and a € [0,b] then :
f(tw) = flir + (L — 10) < 1f(z) + (1 — D0) = ¢(a)

that is fe S*(b). o

b) If fe 8*(b) and @, y, « -+ y< [0, b, tlien, by lemma 2, ’\'\T(a"}"lave :

fao by — o 1ETY L, foty o fw) o Fe)
% -y a1y @ Y
and so, fe S(bh).

Remark 1. These simple inclusions were not always known. So, in
[5] it is proved that if f is convex and subadditive then f(z)/@ is non-in-
creasing. In fact it is constant (if f(0) = 0).

Definition 1. The function [ has the property “P» in the mean, if
the fumnction : .

(1) F(z) = iSf(t) b, 1 >0; F(0)=0 ol
a! ' i

has the property “P”. -
Let us denote by : MI(h), MS*(b) and MS(b) the sets of functions
which are convex, starshaped, respectively superadditive in the mean.
The main result from [4] is: \ .
TrzoreM 1. For any b > 0 hold the strict tnclusions :

(2) K(b) = ME®D) < 8%(b) < 8(b) = MS*(b) = MS(b).

Proof. @) Making in (1) the change of variable : 1 = zu, it becomes
(see [3]):

1
(3) I(x) = gf(am) du.
: 0
If fe I(b), then for every t€ (0,1) and «, ye [0, b] we have :
1
P+ (1 — by) — g.f(twu (= ) e <

0
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< S(t flaw) 4+ (1 — ) - flgw) du = F(a) + 1 — 1) F(y)

that is fe MK(b).
b) From (1) we have:
(4) J(@)m = F'(x) + F(a)z
and if F' iy convex F’ is nondecreasing and by lemmas 4 and 2 fe 8%(b)
) v

¢) The inclusion S*(b) < §(b) was pr i i i
also the inclusion : MS*((b)) c ng;%’(x.g By R NS g G

d) Let fe S(b). Then, for every xe [0, b] and every we (0,1):
J(@) = flau 4+ 1 — w)z) > flau) + f(1 — u)z)

and so:
1

N@) — 28 () = S(f(w) ~— 2 flau)) du > S(f((l — u)w) —

1 1
— f(au)) du = Sf((l — w)x) du — Sf(um) du = 0,
o 0
But t};}i}i, by Lemma 3 and by relation (4) is equivalent with fe MS*(b).
e strictness of the inclusions (2) was sroved in [3] by mor .
ples. A bem;tiful proof of this fact was aJIS(Ia given bv[lE];.%‘y Eggegxb?cnﬁ
in [2], showing that the function f(2) = (1 + 1/2) exp'(—lle i3 in K(I}SJ
?

MEK(1/2), S*((5 — 1)/2), §(0.8955...), MS*(1) a: o
of b bein’g in every case the gre&te;’t pt;ssi(bl)ef)i.ud s 2l {8k palans

Remark 2. In [6] it was considered the more general mean :

(5) Fylw) = == . S 4 oy
(@) o) g@fdt, F0)= 0.

Related to it, we have given i i e
e ety I;Iify. given in [8] the following result, whose proof we"

THEOREM 2. If the tramsformation (5) /
18 f01 preserves the
starshapedness or the superadditivity) then the function g is ofctohzv;oajﬂumy- .

(6) g@) =Lka*, a >0, k0.

Proof. The f i — A I )
by lemm;f4; e function fo(#) = cx is in XK(b) for any ce R, and so

F, —_% \y
(@) @ Sg(t)tdt
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must be in §(b). But ¢ being of arbitrary sign, this happens if and only if,
for ¢ =1, it verifies :
Fo(w 4 ) = Fo(@) + Fo(y)
for any @, y, » +ye€ [0, b]. Thus (see [1]): Fy(») = ka which gives (6)
with @ s 0. But, it o < 0, (5) is not defined for Sty = O, thus we must
take o > 0.
Remark 3. As was pointed out to me by prof. J.E. Pedarié, such

a result was also proved by L.B. LACKOVIC in his doctoral dissertation
using :

Fo(2) = Sg(t) ) dt/g g(t) s

instead of (5).
Remark 4. Denoting by ¥, the function (5) with g given by (6), we
have :

(1) Fu(a) = —“;St“—l ft) at
A

and so : ’

(8) 1(@) = Fu(2) + (@]a) Fya)

It we make in (7) the substitution (see [67]): ¢ = au!/, it becomes :
1

(9) F.(x) = S Jlz u*) du.

In what follows we shall prove that the condition from theorem 2 is also
sufficient. For this, let us denote by MK (), M*8*(b) and M*S(b), the sets
of functions fe ((b) with the property that the corresponding functions
F, belong to K(b), 8*(b) respectively S(b).

~ THEOREM 3. For any b >0 and any o >0 hold the Jollowing inclu-
Sons :
(10) K(b) = M°K (b) = 8*() < S8(b)
N n
MS*(b) < M8 (b).

Proof. a) If fe K(b), te (0,1), », ye [0, b], then, by (9):
1

Byfts 4 (1 = t)y) = Sf(twu"“ (1= gy du <

0

<S(tf(wu”“) (L =) flyu'l®) du = tFo(w) 4 (1 — 1) Fo(y)

thus fe MK (b).
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b) It fe MK (b), taking into account (8), we have :
J@)x = Fo(@)]o + Fo(a)a

thus, by lemmas 1, 2 and 4, fe S*(b). Lemma 4 gives also theinclusions :

S*(b) = S(b) and MS*(b) = M“S (b).
¢) It fe S*%(b), i€ (0,1) and ze [0,b], using (9), we have :
1 1

B, (tx) = Sf(tmul/“) du < Stf(wu‘/“) du =t F,(x)
0 V]
that is fe M*S*(b).
d) For fe 8(b), @, y, # +ye [0, b] ,we have also :

1 1

Pl i) 2 Sf((w ) du S(f(wu‘/“) L f gty du =

0
P B Fa(m) _{_-Fa(y)

‘thus fe M“S (b),

Eemark 5. To prove the strictness of the inclusions, we may poceed
for @ # 1 as was done in [2] for g = 1 : let F(z) = exp(—1/z) for x+£ 0
and F(0) = 0. From (8) we get : f(x) = (1 + 1/az) - exp(—1/z) for z # 0
and f(0) = 0. If we denote by k, k,, s* s¥ s, s, the largest value of b,
for what f belongs to K(b), M“K(b), S*(b), M*S*(b), S(b) respectively M*S(b),
we haye from [2]: &, =1/2, s =1 and s, = 1/In 2. As ["(@)> 0 only
for we [(a —4 —Va*+8)/(4a — 4); (0 — 4 4-Va® F8)/(4a — 4)], we
have k=0if 0 <a<1 and k = (a —4—%]{:&"‘—{—8)/(4@ — 4y <12 if
@ >1. Using Lemma 3 we have also s* = (¢ — 2 4-|/a® + 4)/2¢ < 1.
Applying Bruckner’s test (see [2]), we obtain also that s is the unique
positive solution of the equation :

az(exp (1/z) —2) =4 —exp (1/w)
thus: 1/In 4 <s <1/ln 2. So:
kb <k, < 8% <sf <s, and s < s,. i
We remark also that 1/In 4 < 1 = g¥, that is, for 0< ¢< 1 we can have
s < sy and so S(b) & M S*(b).
Remark 6. In [7] was proved that if 0< ¢ < ¢ then :
MK (b) > MK (b) and M“S*(b) > M°S*(b).
Thus (10) extends to :
K(b) = M°K (b) « M“K(b) = 8*b) < S(b)
N N
Me8*(b) = MeS(b)

N
MeS*b) = M8 (b).



172 I GH. TOADER 6

Moreover, it 0 < o <<1:
S(b) = M'S*(b) = MS*(b) < HM*S*(b).
We do not know if it is true that :
MeS(b) « M*“S(b).

We have proved algo similar results for sequences (see [9]).
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