MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 15, Nº 2, 1986, pp. 145-147 and the second of the state of the second se

I-POINTS WITH RESPECT TO A GIVEN SET

Jan 1997 B. Juli swellow P. H. Landow That Star Prince Co.

LIANA LUPSA hlarida Maria angung iku ikali (Cluj-Napoca) "Charles" and a min'r hypothete on a diagon's was the larger to jump

Let $(V, \| \|)$ be a normed space and let M, X be two nonvoid subsets of V. The company of the set of the second sec

DEFINITION 1. We say that a point $x \in X \cap M$ has the I-property with respect to M, if there is an r > 0 such that $S(x, r) \cap M \subseteq X$, where $S(x, r) = \{ y \in V \mid \|x - y\| < r \}.$ Let $I_{\mathcal{M}}(X) = \{ x \in X \cap M \mid x \text{ has the } I\text{-property} \}.$

Remark 1. It is easy to see that the following assertions are true:

(a) $M \cap \operatorname{int} X \subseteq I_M(X) \subseteq M \cap X$;

(a) $M \cap M \cap A \subseteq I_M(A) \subseteq M \cap A$; (b) if M = V, then $I_M(X) = \text{int } X$; (c) ext $X \cap I_M(X) = \Phi$; (d) $I_M(M) = M$. DEFINITION 2. We say that the set X has the I-property with respect to the set M if $X = \Phi$ or if $I_M(X) = X \cap M$. Example 1. Let V = R, $M = \text{the set of rational numbers and } X = \{0, 1, 3\}$ We have $I_M(X) = \Phi$

 $= \{0, 1, 3\}.$ We have $I_M(X) = \Phi$.

Example 2. Let V = R, M = the set of rational numbers and X =

 $=\{x\in R|-\sqrt{2}\leqslant x\leqslant \sqrt[q]{2}\}. \text{ We have } I_M(X)=M\cap X.$ Example 3. Let $V=R,\ M=$ the set of integers numbers and X=

 $= \{0, 1, 3\}.$ We have $I_M(X) = X$. Proposition 1. If A_i $i=1,\ldots,m$ are subset of V with the I-promise $i=1,\ldots,m$ perty, then $\bigcap^m A_i$ has the I-property with respect to M.

Proof. Let $z \in M \cap \left(\bigcap_{i=1}^m A_i\right)$. Because A_i $i = 1, \ldots, m$ has the I-promarks such that $S(z, r_i) \cap I$ perty with respect to M, there are $r_i > 0, i=1,...,m$ such that $S(z, r_i) \cap$ $\check{M}\subseteq A_{i,i}$ $i=1,\ldots,m$. Let $r=\min_{i=1,\ldots,m}\{r_i\,|\,i=1,\ldots,m\}$. Because $S(z, r) \subseteq S(z, r_i)$ for all $i \in \{1, ..., m\}$, we have the contract of K. to a strong a commence of which respect to

$$S(z, r) \cap M \subseteq \bigcap_{i=1}^m A_i$$
.

Hence $z \in I_M(X)$. Since z was arbitrarily chosen, it follows that $M \cap \bigcap_{i=1}^m A_i = I_M \bigcap_{i=1}^m A_i$. 2

PROPOSITION 2. If A_i i $\in I$ is a family of subsets of V with the I-property with respect to M, then $\bigcup A_i$ has the I-property with respect to M. $i \in I$

Proof. Let $z \in \bigcup_{i \in I} A_i$. Then there is a $j \in I$ such that $z \in A_j$. Because A, has the I-property with respect to M, there is an r>0 such that S(z, $r)' \cap M \subseteq A_j$. Because $A_j \subseteq \bigcup_{i \in I} A_i$, it follows that $S(z, r) \cap M \subseteq \bigcup_{i \in I} A_i$. Hence $z \in I_M(\bigcup A_i)$. Since z was arbitrarily chosen, it results that $M \cap (\bigcup_{i \in I} A_i) = I_M(\bigcup_{i \in I} A_i).$

Let $\mathscr{I} = \{A \subseteq V \mid A \text{ has the I-property with respect to } M\}$. From definition 2, remark 1 and propositions 1 and 2 it follows that the family \mathcal{I} is a topology on V.

DEFINITION 3. We say that a point $x \in X$ has the c-property if there is an r>0 such that $S(x, r) \subseteq \operatorname{conv} \bar{X}$, where $\operatorname{conv} X$ denotes the convex hull of X . A all wall like I for thing a full year will I know that

Example 4. Let $X = \{(0,0), (1,2), (2,1), (1,1)\}$. The point (1,1) has the c-property, but the points (0,0), (1,2) and (2,1) do not have the c-pro-.[KFTM]atty: All salt salt perty.

Remark 2. If $x \in \text{int} X$, then x has the e-property.

DEFINITION 3. We say that the set X has the c-property if all the points of X have the c-property.

Definition 4. We say that the set X has the c-property with respect to M if all the points of $X \cap M$ have the c-property.

Example 5. Let Z be the set of all integer numbers and let $X = \{(x, x)\}$ $y \in \mathbb{R}^2$ $|x| \ge 1/2$, $y \ge 1/2$, $2x + 2y \le 5$. The set X has the c-property with respect to $M = Z^2$.

Proposition 3. If A_i $i \in I$ is a family of subsets of V with the c-property with respect to M, then $\bigcup A_i$ has the c-property with respect to M. bus a fall min remains in fall of the S. S. at 1 and S. S. at 1 and S. S. at 1 and 1.

Proof. Let $z \in M \cap (\bigcup A_i)$. Then there is a $j \in I$ such that $z \in A_j$. Because A_i has the c-property with respect to M, there is an r > 0 such that $S(z, r) \subseteq \text{conv} A$. But $\text{conv} A_j \subseteq \text{conv}(\bigcup_i A_i)$. Then $S(z, r) \subseteq \text{conv}$ $(\bigcup A_i)$. Hence z has the c-property. Because z was arbitrarily chosen, it follows that the set $\bigcup A_i$ has the c-property with respect to M. Let the parameter $i \in I$. Let $0 = i \in I$ and $i \in I$ are the parameter $i \in I$

146

 $c - I(X) = \{x \in X \cap M \mid \exists r > 0 \text{ such that } S(x, r) \subseteq \text{conv} X \text{ and } x \in I_M(X)\}.$

PROPOSITION 4. If X is a strongly convex set with respect to M, then the set $c - I_M(X)$ is also strongly convex with respect to M.

Proof. Let $x \in M \cap \operatorname{conv}(c - I_M(X))$. Then there is a natural number m and there are x^1, \ldots, x^m elements of $c-I_M(X)$ and $t_1 \ge 0, \ldots, t_m \ge 0$ with $t_1 + \ldots + t_m = 1$ such that $x = t_1 x^1 + \ldots + t_m x^m$. For each $i \in \{1, \ldots, m\}$ there is a positive number r such that $S(x^i, r_i) \subseteq \text{conv} X$.

Let $r=\min\{r_i|i=1,\ldots,m\}$, and let $z\in S(x,r)$. For each $j\in\{1,\ldots,m\}$, consider the point

$$z^{j} = z + \sum_{i=1}^{m} t_{i}(x^{j} - x^{i}).$$

For each $j \in \{1, \ldots, m\}$, we have $||x^j - z^j|| = ||x - z|| < r \leqslant r_j$. Then $z^j \in S(x^j, r_j)$ for all $j \in \{1, \ldots, m\}$. Because $z = \sum_{i=1}^m t_i z^i$ and $S(x^i, r_i) \subseteq \text{conv} X$ for all $i \in \{1, ..., m\}$, we get that $z \in \text{conv} X$. But z was arbitrarily chosen.

Hence $S(x, r) \subseteq \text{conv} X$. From the definition of the strongly convex set with respect to a given set (see [1]) we get that $M \cap \operatorname{conv} X \subseteq X$. Then we have

$$S(x, r) \cap M \subseteq M \cap \text{conv} X \subseteq X$$
.

Hence $x \in c - I_M(X)$.

Because x was arbitrarily chosen in $M \cap \operatorname{conv}(c-I_M(X))$, we get that the $M \cap \operatorname{conv}(c - I_M(X)) \subseteq c - I_M(X)$. Hence $c - I_M(X)$ is strongly convex with respect to M.

REFERENCES

[1] Lupşa L., Convexity with respect to a given set. Preprint no. 4, 1983. "Babes-Bolyai" University, Faculty of mathematics, Research seminars.

Received 12.10.1985

Universitatea din Cluj-Napoca Facultatea de Matematică str. Kogălniceanu no. 1, Cluj-Napoca