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I. Introduetien. It is well known that if P e Q[X] is a polynomial
with rational coefficients, then the SeqUence (tq)ns1, @, = sin P(n) is not
convergent at 0 (see [2] pp. 145—146). _

In [1] it was proved that if JiR - R is a continuous periodical
funetion with irrational period T, then the sequence (f(n))u»: is every-
where dense in {he closed interval [m, M), where m and M are the
bounds of f. :

In what Tollows, we shall say that a sequence of real numbers (a,)ys
is relatively dense for the function F+R - R if, for every @, y € B with
f(®) < fly), there exists an #> 1 such thaf Jle) < flan) < f(y). I 7 is a
continuous bounded funection which attains “its bounds m and M, if is
clear that (a,)us1 is a relatively dense sequence for f it and only if the
sequence (f(a))i>1 is everywhere dense in [, M]. Then, it is natural
to ask if on can find a sequence (&,)n»1 of real numbers which is relatively
dense for every continuous periodical function J: R = R of period. 7.
We shall call a sequence with this property a “relatively dense univergal
sequence” for the class of continuous periodical functions of pevicd 4.

The result of [1] shows that if 7 is an irrational number, then the
sequence (@u)n»1, @ = n, is a relatively dense universal sequence for the
class of continuous periodical functions fi B > R of period 7.

In this paper, we shall construct four classes of relatively denge
universal sequences for the set of continuous periodical functions f: & -+ R
of period 7. \

In the second part of the paper, it is i proved that if (a,),. is an
unbounded sequence of positive numbers with the property lim sup (a,,, —

b H~3C0O
— a,) = 0, then it is o relatively dense universal sequence for the clags
of continuous periodical functions S+ B - R of period 7.

3

In the third part of the paper, we prove that if £ e R[.X] has the
property %T (P — a) ¢ Q[X], T e R\{0}, thén (P(n))i>1 18 a relatively

dense universal sequence for the class of continuous pericdical functions
J: B-— R of period 7. This result is much better than those of [2] and [1].
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In the fourth part of the paper, based on the _results of
H. FURSTENBERG [3], we give other two classes of. relatively .denie
universal sequences for the continuous periodical functions of period 7.
First, we shall give some definitions.

1.1. DEFINTUION. Let J = R be an tnterval (finite or wnot). We shall
say that the set A is everywhere dense in J if A = J and, for every open
nonempty interval I, we have (I nJ) n A # 0.

1.2. DEFINITION. Let (Wy)ns1 be a sequence of real numbers and let
r>0. We shall say that this sequence is uniformly distributed (mod ») if
for every 0 < o < B < 7, we have

i va(a, B) mls E—« A
nH—00 n r

Uy
where vi(o, B) = card {k:1 < k < my 1, — T[ 1}] € (a,8)}.
1.3. REMARK. From definition 1.2, it follows directly that the
sequence (U,)ax1 is uniformly distributed (mod 1) if and only if the se-
quence (2u)ns1, given by v, = 1, is uniformly distributed (mod #).

2. The first elass of relatively dense universal sequenees for the eonti-
nuous periodieal Ifunetions of period T

2.1. THEOREM. Let (tu)usy ond (by)ns1 be two sequences of postiive
real numbers. If

o) (Auhns1 18 unbounded

B) (ba)usp1 18 unbounded

¢ 41 )
v) lim sup 4= =1,
N=200 iy, i
then the set M = {-q—’”- cm, n € NN {0} is everywhere dense in the interval
b

[0, o0).

Proof. We show that [0, oo) < M. Let Z € [0, co) and let V be a
neighbourhood of Z in R. Then there exists an interval [z, y) = V, where
T A\V<he% Z = 0, we have # = Z = 0 and from condition ), it follows
that there exists an m e N with b, > a,/y such that a;/b,e M n V.

When Z >0, we suppose that 0 <o <Z Let (x— y)/z >0.
From v), it follows that there exists an n, € N such that :

(2.1) A - + ¢ for every m> n,.

Uy _q
From B), it follows that there exists an m e N with b, > an,,[m. If' 1::c.he
number # is given by n = inf {p € N : p > n,, ap > © - by}, then it satisties
I »an_l by

< bm Sk
T 4

(2.2)
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Then, for »>mny by (2.1), one obtains

(2.3) : & <&+ sw =y.
an—l

From (2.2) and (2.3), we get

p< B gt
m am_]
so that a,/b,e M n (x,y) < M n V.
In both cases, we get Z € M and Theorem 2.1 is proven.

<Y

2.2. REMARK. The folllowing examples show that without one of
the conditions «), B) or v), Theorem 2.1 is not generally true.

a) a, =1, b, =m

b) a, = n,b, =1

¢) a, = b, = ¢", where ¢> 1. In the last example, we have —21~ (¢ +
+ ) ¢ M.

2.3. COROLLARY. Let (@)ps1 and (by)us1 be two sequences of positive
real numbers with the properties :

o) (@)ws1 18 unbounded

B) (bp)us1 ts unbounded

) lnlniosup (Gnry — an) = 0.

Then the set M = {a, — b, : n,me N N{0}} is everyhere dense in R.

Proof. Take A, = ¢*n, B, = e* for n > 1. It can be easily seen
that the sequences (A,)us1 and (B,)us1 satisty the conditions of Theorem
2.1, Therefore, the set M, = {A,/B,: n, me NN{0}} ={en=tm: p, me
€ N\ {0}} is everywhere dense in the interval [0, co). It follows that the
set M is everywhere dense in R.

If the sequences of positive numbers (@u)ns1 and (b,)n»1 are increa-
sing, then we regain the result of M. SOMOS [7]-

2.4, THREOREM. An unbounded sequence (a,)n31 of positive real numbers
having the property lim sup (d,,, — a,) = 0 45 « relatively dense universal
H—=>c0

sequence for the class of all continuous pertodical functions f: R — R,

Proof. Using Corollary 2.3,.we get that the set M — {an — mT:
ny MENN{0}} is everywhere dense in R.
Let f: B - B be a continuous periodical funetion with period
T and let y € [m, M). Then, there exists an ze R such that f(z) = 4.
As M is everywhere dense in B, if follows that there exist two sequences
of natural numbers (n,)is; and (mp)e>1 such that lim (aw, — m,7T) = .
koo

Then, by the continuity of f, we get
lim fan,) = 1im f (an, — m,T) = f(2) =y

and the theorem is proven.
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4
] nik mbers
9.5. COROLLARY. Suppose that the sequences of poszt@(w(i)real n(})t)mb— k
N s i ed and that limsup (@zi — Gi’) =
(a§Mus1 for 4 =1, q are unbound 3

. . J ] (i)
for all @ = 1, q. Then the sequence (An)u»1 defined by A=Y Yi '

1=1
1 ; Jver ' 2 lass
where v; >0 for 1 =1, ¢ is a relatively dense univel sal sequence fo1 the c
' ¢ . » - 4
of all continuous pertodical funchons Jolh = Rr.‘ 1y
The proof is an immediate consequence of Theorem 2.4.

9.6. AppricaTIONs. () The sequence (P(n))up1, Where P is a ,,genera-

ol jal” Lkl T TS e it e 0, e (01)

lized polynomial P(X) = 7, X% A Ve e Z

for i =1, ¢ is a relatively dense universal seq{m]tc{i Otlht a%%el'i;ion B
1ot ical tuncti This is equiva 0 the asse he
i '] al functions. This 18 equivalell ertion v

Eﬂg%ﬁ??}a 22113—(110‘11 ~1u yom): meN} is everywhere dense 1n [m, M],

- 5 -

e fis ¢ i g periodical function.
where f is a continuous p .

4 7
=y oY v

Thus, the sets {sin (?V‘n: —1{— Vﬂ,)lz ?7, elN‘[}]’ {cos (2 Vn +5 Vn):neN;j
are everywhere dense in the Im erval [—1,1]. . .

(ii)y'l?he sequence (Inn)as1 18 a_relat.wel'g _den;}el :11111?3353&11] T}?&ei?e
tor the class of all continuous periodical funm%mns. : 'mncont.'u;ﬁoﬁs i
ne NNJ{0}} is eyerywhere dense in [, M) l‘or 19.1 1Zly o aTy, oot
dical function f. For exainple, the sets {sin (1111]). {0}},
(Inn): ne N J0}} are everywhere dense 1n [—1,

3. The second class of relatively dense universal sequenee for the
continuous periodical funetions of period T
3.1. DrpisurioN. Let i B — R and let PeR[X), Te _R\{%};@)ﬂ::
shall éé&y that f is T-relatively pertodical @g@th respect to P if (2
&y = [(P(m)) for all n eN and f.'nt? : e
8 iipl)i{reh-l-hv , thig class of functions is larger than ?h]? class X(I)lf i%el%gr
dical fanctions with the period T'; but we shall see t:hat, ‘or example, 1o
P . QLX) T irrational and f continuous, they commde: ‘ S
| We shall now present some lesnmas to be used in the prools,
which are self-important. :
3.9, TmvMA. Lel $>0, a2 0, b> 0 be integer numbers and let 0
. an irrational number. Then the sel ' s -
T A={n-+mb:me N, n€Z, n'=20 (mod s), m = b (mod s)} is
serywhere dense in B el
g Before giving the proof, we notice that the 1'emr.na is \n;mel_lhknown
in the c;nse g —1 and ¢ = b= 0. The above generalization 18 (})1 Ltﬁ’l :a;n(j,
iype :aus ‘.thadt from [4] (where it appears in a problem _Of diophan 0]
proximation).
Proof. Let

B:fa—l—m&):meN,mzb(mods)}:{a+b()Jr»ks():keN},
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Obviously, it will be sufficient to prove that the set

Bmods ={smods: zeB}= {x~s[ﬁ:|: meB}
" :

is everywhere dense in the interval [0, s).

Suppose that the interval [0, s) was

Telts o wrapped up on the circle of radius s/2r.

The set B mod s is obtained starting from

a+be the point @ + 0 with the step” 0, = s0.

asibsks)e As 8,18 an irrational nmber, it follows that

the points 0,, 6,, ... are pairwise distinct.

Fia. 1 Among the points 0,, 0,, :.u, 05,41, there

i are two between which the distance is

smaller than s/s.n = 1/n. But » can be made as great as we want and

it follows that B mod s is everywhere dense in the interval [0, 1) (if

in % steps we go through the distance d on the circle, then evidently

this is the distance which we go through in % steps starting from an ar-

bitrary point.) _

We shall see that, from Lemma 3.4, it follows that the set B is
uniformly distributed (mod s). ‘
The following lemma is one of the central results in [8].

3.3. LmaA. (Wely' [8], Sabtz 9). Let P(X) = a,X? + ... +
+ a, X + a, € R[X] be a polynomial such that t least one of the coeffictents
Upy oy @y 18 an wrrattonal number. Then ; :

ol 10 L el
lim —- ¥y, ¢ P = 0.
N—yoo lV 1—=0

The proof of this lemma is elementary but it requires a long intro-
duetive argument which we omit herein.

From the foregoing lemma and from the well-known theorem on
uniform approximation of integrable funections by trigonometric poly-
nomials, there follows (see [5], vol. I,  Abs. II, Chap., 4, § 2, ex.
162 —172)

3.4. LEMMA, Let P(X) = a,X? + ... + a,X 4 a,€ R[X] be a
polynomial such that at least one of the coefficients a,. .. .,a, 18 an irrational
number. Then the sequence (P(n))ns1 18 uniformly distributed (mod 1)

3.5. Let T # 0 be a real number and let P e R[X], P(X) = kij,Xp -+
+ oo X Ha be a pgl‘y'no'nn'al such that%(? — ay) € Q[XT Then the

sequence (P(n))us1 18 o relatively dense universal sequence for the continuous
pertodical function of the period T.

Proof. As P, :—15 (P — a,) ¢ Q[X], it follows, by ILemma 3.4,
that the sequence (X,)us1 X, = Py(n) = P(n)/T — a,/T is uniformly

distributed (mod 1). Whence the set A = {P(n) + mT': neN, meZ)}
is everywhere dense in R. e
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t f+ R — R be a continuous periodical fuuetuin “é‘bllllel%leapeert}\?vo
({Jel tf e [m, M]and z€R be such that _f(wl/ -—I~y.—i Al
o 2 ('yn )/>1, and (mp)is1 With 2, € N, m€ J?'g'nTlOl;S ’aﬁd |
ts'flql‘gellillcxf (P(nk )i/+ m,T) = @. The funetion [ being conti
& k : e .
Wit i by = — f(lim (P(n;) + Mz
dical with the period 7, it follows that y = f(@) =f (k_>°° |

" =l : nd theorem is proved.
— tim f(P(m) + msT) = lim f(P(ns),

i ; , because
3.6. REMARK. This theorem gives the best possible result bheca

j eriod 7'
and iodical function with the period 1
for P,= —]1',- (P — a,) € QLX] and f periodica

idently have
Mol ety card {f (P(n)):ne N} < . T,
i i i roof of the las e
. ollary is contained in the prooi. ‘ e
but VThilf}(f?(l)ll?jc‘gni;i?(: Oit Se?para‘tely because it is self-important and gi
ut we prefe § 8
a wide éencralimtion for Lemma 3.2.

J o rew mber. T # 0, and let P(X) =
3.7. CoroLLARY. Let T be a real number, - 1,) ‘ S e
. X e R[X] be such that — (P — &) §
:ale’+...+al + a, e e
the set A = {P(n) +mT :ne N, m.eZ} 18 6'0{37%0%1“@ dens i
fllv’;:,fanseqbuence (P(’ﬂ/));p>1 is uniformly distributed (mod 1)

3.8. REMARK. It 1§ interesting t{i fitllld th? %olyL}U}glgi:;l&_«_(g(}if)[%}

o trom X .7 for which the set B = i£(n) -+ &M
differing flgm. {-\:tri{;’wli’eieé di%lat, in B. A sufficient (-..0)11(1301?11“:5:1 gm:{
%ECN(;’}(% ebui}g E is édsy to see that in this case grad (@) =1 an

= k. N
X %sing corollary 3.7, We can Now prove | i Sl
y £ real number, let P(X) = tpad® 7 -«
S.Q'XTE{LEOR?IR[_I;% gnﬁ (l)etb}(j :aR - R be rélatively T-periodical con
R |

L 71, then f 18
i y d =3 _——=l\# P - O ¢ (‘2 [AJ
tinuwous with respect to function P If Py T ( o) f

. : jod T.

iodical function with the perioc i} At D) o eilie
i ul)" f J;et 2 € R. From Corollary 3.7, ib tqllolx;vs, tlll-atgther.esiﬁi g
sequen(:eosoff;zk)/m and (mess With my € Ny, mg € By L2y
lim. (P(ny) + m 1) = @

k—co
Then o o 1
Ho) = ftim (P(n,) + meT)) =00 F(PCg) + miT)

= lim f(P(ny)) = lim f{(P(ny) + (my + 1T =
koo koo : . s _|— ).
= P T = {(lim g m, 1) + T) = f(& 1
= lim f P(n;) + m, T -+ T) —f(};l (P(ny) + M
3. REMA T S , 16 18
J N  Theorem 3.9 shows thab 1 meaninglesdile B
Th ori'r%lo'?) 5 fjolr lzcwea}f(?r assumption and, evidently, it 18 sufficien ‘
e .

e = o IR
the proof that f be relatively T-periodical with respect to

meaningless  to state

RELATIVELY DENSE UNIVERSAL SEQUENCES

3.11. G. RHIN proved in [6], by generalizing the results of I. M.
"VINOGRADOYV, that lemmas 3.3 and 3.4 (which are equivalents) remain
true if in their statements we replace everywhere the natural number
n by p,, the n-th prime number.

Using this result, it follows that Theorem 3.5, Corollary 3.7 and
Theorem 3.9 remain valid it in their statements we replace everywhere

the natural number » by p,, the n-th prime number. (The proot of RIHNs
result is difficult).

3.12. ApPPLICATIONS. Let P = qa,X'» 4 ... + a; X' + «, Wwhere
Upy ooy tyy g € By @, # 0, 1y .., 7, € QN 0} and at least one of the num-
bers @,/m, ..., @/ is irrational. Then : (i) the sequences (sin P(n))y»1,
(eos P(n))us; are everywhere dense in the interval [—1,1].

(i) the sequence (tg P(n))ux1 is everywhere dense in R. To prove
this, it is sufficient to notice that if ¢ is the least common denominator

of the numbers 7y, ..., 7, @\ {0}, then P(X7) € Q[ X ]and so we can apply
Theorem 3.3.

3.13. REMARK. Applications 2.6. and 3.12 leave open the problem
of density in [—1,1] of the sequence (sin P(n)),»;, where P = a,X%
+ oo+ @ XM+ g s a “generalized polynomial” with a,,
@, # 0, a;>1 and at least one «,; iy irrational.

Generally can sutficient conditions be found for a **generalized polyno-
mial” P such that the sequence (f(P(n))us1 be everywhere dense in [m, 1|
for every f: B — R continuous and periodical with the period 7T'?

Taking into account the previous results, we make the conjecture

that, at least in the tirst case above, the result of applications 2.6 and 3.12
remains true.

coy gy G E IR,

% Completions and remarks. We shall briefly present the results
of H. FURSTENBERG (3] and using them, we shall construct new clas-

ses of sequences to which the result of the foregoing sections can be ap-
plied.

4.1. DEFINITION. A audtiplicative seniigroup %<7 is lacunal if the
set B ={ceX: o> 0} contains only the powers of the positive integer a.
Otherwise, the semigroup is nonlacunal.
For example,
B ={a? attl 0y Pt
ae N\ {0} and p e N, while
Z,={2"-3":m,me N\ {0}}is a nonlacunal semigroup.
4.2. DEFINIIION. Let G < R. Se shall say that G is discrete in the to-

pology of R if for every © € G there ewists an e >0 with (x — ¢, & + ¢) n G =

y ...} is a lacunal semigroup for every

4.3. LEMMA. Let G = R be a nontrivial addilive group such that the

set G 1s discrete in the topology of R. Then there exists  real nwmber
with the property

G =uZ ={uk:keZj.
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Proof. Since @ is discrete in the topology of R and G is an additive
group, it follows that w =inf{|z —y|: 0,9y €@, = # y}>0. From the
properties if infimuam, it follows that there exist », y € ¢ such that » —
— ¥ = v and, consequently, uZ < G.

Let 2z €. We have

=qu+rwith0 <r<wu,qeZ

If 7>8, then u>7r =0 — gueG which is a contradiction. S50,
r = 0 and 2 = gu € uZ which completes the proof of the lemma.

The following two Jemmas are immediate consequences of lemma 4.3.

4.4. Lmvivia, Lei G < R be a montriviel additive subgroup of R.
Then only one of the following assertions is true :

() there. ewists @ we RN\{0} such that G = uZ
(it) G i3 everywhere dense in R.,
A s

4.5, LmumA. " Tet' 8 € R, 'be o nontrivial additive semigroup. If
the additive group G =8 — 8§ ={¢' — g : s’y 8" € 8} 43 diserete in the
topology of R, then there exists u we RN\{0} such that S < G = uZ.

We notice that if 8 is a nontrivial countable additive semigroup,
generated by the elements ay, a,, ... €8,

“then
8 — 8 = (8= nla, + ...+ a,) and

=1
8 (a4 ey S (- D)o, 000+ ayyy), n>1.

(From this and frem the foregoing lemmas, one can easily obtain the
results of H. FURSTENBERG.

4.6. ILeyvA (FURSTENBERG [3], lemma IV-1). Let X =7
be a multiplicative nonlacunel semigroup and suppose that

Lr={ceZiioz 0} = {8y 8. .i } With 18, << 85y, 1.1,
Then

(lim Smo g,
n-»00 Sn
Lemma 4.6 gives a new class of sequences for which the results of
section 2 ave applicable.
The following theorem 'is a direct consequence of theorem 2.4. and
lemama, 4.6.

4.7. TurwornM. Let % = Z be o multiplicative nonlacunal semigroun
and let 5+ = {ceX: o> 0} = (s, 85, ...} with s; < 8;4, for i=>1. Then
the sequence (In s,),», 48 @ relatively dense untversal SJor the class of all con-
tinuous periodical functions. _ ‘

We conclude with the following important result of H. FURSTEN-
BERG [3]. '

4.8. ImwmA. Let £ < N be o multiplicative nonlacunal semigroup.

Then, for every irrational number o, the set o % = {ac: ceX) is every-
where dense (mod 1).
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4.9. CoroLLARY. Let P = {p,, sy ..., Du.- .} be the set of prime
numbers and let @ = P with card (Q)> 2. Then %y ={neN: p prime,
plu=pe@}is evidently a multiplicative nonlacunal semigroup. Moreo-
ver, for every ke N\{0}, X*Q = {nF; n€Xg}) is also a mulfiplicative
nonlacunal semigroup. :

From the foregoing lemma, it follows that

adig = {an’: ne Xy} is overywhere dense (mod 1) for every irra-
tional number o« and ke N\ {0}.

Remark that for every >0, there exists a @ = P, @ infinite,

with Y, L < =

qeQ 4

The following two theorems are analogous to theorems 3.5 and 3.9.
In their proofs, we use lemma 4.8 instead of lemma 3.4.

4.10. THEOREM. TLet 2% == {sy, 85, ...} be a multiplicative nonlacunal
semigroup and let T = 0 be a real number. For every real number o with
the property that o/T is irrational, the sequence (as,),», 18 o relatively dense
untversal sequence for the class of continwous periodical functions with the
pervod 1.

4.11. TueorEM. Let 1' + 0 be @ real number let o € R with a/T trra-
tional, let % ={s), 8y ...} S Z be o mulliplicative nonlacunal semigroup
and let f: 1 — I be a continuous function. If f has the property f(ws,-+-
- ml) = f(as,) for cvery w € NN\{0) and mecZ, then f is a pertodical
Junction with the period 1.
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