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1. Introduction. In an earlier paper [14], we have introduced the
class of K-monotone operators, which is wider than the class of monotone
(in the sense of Minty-Browder) operators. Since this class of operators
also includes a sufficiently large set of (o)-monotone (monotone in the
sense of order) operators, it follows that the investigation of K-monotone
operators is of interest at least for a unitary approach to the theories of
monotone and (o)-monotone operators. The fact that this unitary approach
is a natural one, follows from refs. [15], [16], where the best-approxima-
tion operator of the elements of a Hilbert space X, Dby elements
of a nonvoid closed convex subset ¢ and with respect to a certain norm
on X, is investigated. In some conditions imposed to the norm and to the
subset C, the best-approximation operator can be monotone, or (o)-mono-
tone, or (essentially) only HK-monotone. In this paper, we shall extend
some well-known basic results in monotone operators to the class of
J{-monotone operators. Part of these extensions were already done in

[14].

2. K-Monotone operators. Let X and Y be two real linear spaces.
By <.,.> we denote a bilinear functional on X x Y. If K <« X is a
conver cone (i.e. K 4+ K < K and «K < K for any « > 0), then the
polar cone K* of K with respect to the bilinear functional ¢.,.) is defi
ned by K* ={yeY; (x,y) >0 for all xeK}. Let 4:X —2Y be a
multivalued operator and denote by D(d4) the set {seX; Az # O}.
The operator 4 is called monotone (with respect to the bi-linear functio-
nal ¢.,.}) it for any », @' € D(4), the inequality (o — o', y —y’> = 0
holds for all y € Aw and ' € A»’. The operator 4 is said to be (o)-mono-
tone (monotone in the sense of order) provided that whenever x, o' € D(4)
and # — o' e I{, then y — y € K* for all y € Az and y' e Az’. In ref.
[14], the operator A was called I{-monotone provided that for any =z, 2’ e
€ D(A) such that » — @’ € I{, the inequality <@ — 2’, y — %’ > 0 holds
for all y e 4w and y’€ Ax’. A monotone ((0)-monotone or K-monotoue)
operator A is said to be maximal monotone (maximal (o)-monotone or
maaimal K-monotone) if, whenever B is an operator having the same pro-
perty as 4 and Aw < Bx for all ¥ € X, then A = B.
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It is clear thabt an operator is K-monotone if and only if it is (—I()-
monotone. Algo, cach monotone operator is IK-momnotone for any convex
cone I and it K U (—K) = X, then the {-monotonicity reduces to mono-
tonicity.

It is also evident that each (o)-monotone operator is K-monotone.

Moreover, if Cc Y is a convex cone and 1': ¥ — Y is a linear ope-
rator which maps € into I{*, i.c. T(C) < I(*, then each operator 4 : X —27
which is (I, ¢)-monotoune, in the sense that whenever for a, ' ¢
e Did) one has o — 2" e I{, then y — 5" e ¢ for all y € 4w and y’ € 4w,
is K-monotone with respect to the bilinear functional <(.,7'(:)), i.e. the
inequality (@ — a’, T(y — y")) = 0 holds for every w, ' e€.D(4) satis-
fying @ — @’ € K and for all y € Aw and y' e Az’

Also, if 1.+ X — X is a linear operator which maps K into 0%, i.c.
I(K) < C*, where 0% ={xeX; (¢ y> >0 for all ye (), then each
operator A : X — 27 which is (I, )-monotone, is K-monotone with res-
pect to the Dbidinear functional (I(.), .), i.e. the inequality (I(z —
— o), ¥y =) > 0 holds for every x, a'ecD(A) satisfying iz — a’ e I
and for all y € Az and ¢y’ e A" _

I, in addition, X and Y ave separated locally convex spaces, If # X

and '€ # ¥, then there exist [13, 2, 2.127 two non-trivial continuous linear
functionals f: X — R and ¢: ¥ — [R such that {(XK) =[0, oo [ and
g(0) = [0, +oo[. We can immediately see that each (K, C)-monotone
operator 4 : X — 2% is J-monotone with respeet to the bilinear functio-
nal defined by (z, y) = f(x) g(y) for 2 e X and ye Y.
3. A maximality result on IK-monotone operators, Throughout
this paper, X will be areal lincar normed syace, ¥ its dual X* and the
bi-linear functional on X x X* will be the natural duality between X
and X*; that is (@, @*) = 2*(2) for » € X and a* e X*.

We shall say that the operator 4 : D(A) — X*, where D(4) < X,
is IC-hemicontinuous at e D(A) it lim A(x + ty) = Ada with respect to
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the weak®* topology of X*, for any-y € K U (—I) such that » - ty € D(A)
for. 0 <1 < 1.4 is said to be K-hemicontinwous. it it is K-liemi-
continuous at cach x e (4). In the particular case when I = X, we
shall ,e,,mploy the usual “hemicontinuity”’ term instead of “X-hernhiconti-
nuity”. '

~ LmemmA 3.1 Let I& < X be a comvex cone with mnon-emptly interior
and let A D(A)— X* be a K-hemicontinuous operator, where D(A) s «
dense conver subsct of X. If wye€ D(A), af € X* and the tnequality
(3.1) o= wyy, Aw — x> =0
holds for every v € D(A) such that @ — xye IL U (1), then af = A,

~ Proof. First, we mention that if int I{ # O, then int I{ + (—int K)
=X and int I v {0} is a convex cone.

Suppose that ay # Aw,. Then, since int K - (—int K) =X, we

may find @ in X such that

(3.2) % — gy eint I U (—int )
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and
(3.3) {u — &y Awy ~— afy < 0.

Since D(A) i8 a dense subset of X and relations (3.2) and (3.3) are satis-
fied in a whole neighbourhood of x, we may assume that in relations
(3.2) and (3.3) xcD(A). Next, the convexity of IMA4) implies that
v, =2, + o — ) e DA) for 0<t <1. Also, Dby (3.2) we have
=y = — ag) eint IO U (—int K) < K U (—K) for 0 < {<1. Con-
Hequently, ay satisfies inequality (3.1), ie. (o, — @y Adx, — a5y = 0, for
0 <t < 1. It follows that <a — %y Ax, — af) > 0 for 0 < < 1. Pas-
sing to limit as ¢ ] 0 and taking into account the K-hemicontinuity of 4,
we obtain <(» — a, da, — 2> = 0, which contradicts relation (3.3).
Henece, af = Aa,.

]
N

TomorenL 3.1, If the convex cone IL < X has non-empty inlerior, Then
each' K-hemicontinuous IK-monotone operator A : X — X* ds masimal
IC-monotone.

Proof. Let B @ X — 2Y" be o -monotone operator such that Ax e By
for all xeX. Consider (arbitravily) m,e€ X = D(A) and xf e Ba,.
As B is K-monotone, we have (w — @, 4w — af) = 0 for all € X such
that z—x, € K U(—K). Henee, by Lemma 3.1, af -=dx, Thus, dz,=DBx,
for every a, € X, which proves the maximality of 4.

LY, Corortary 3.1. Let A : X — X* be a continuous linear operator satis-
Pying the inequality <a, dxy >0 for at least one v ¢ X. Then there exists
a convex cone K < X with non-empty interior, such that A be maximal
K-monotone. '

Proof. If for @, € X the inequality <y, Axz,) >0 holds, then as A
is continuous, there exists a convex neighbourhood V of @z, such that
{ay, Ay >0 tor every @ e V. Now, it is clear that 4 is K-monotone with
respect to the convex cone with non-empty interior: K= {tx; x € VV and
t >0} and we may apply Theorem 3.1.

Remark 3.1. It the convex cone K satisfies ICU (~—I0) = X, then,
the J-monotonicity and the f{-hemicontinuity are respectively equivalerit
to the monotonicity and the hemicontinuity and so, a well-known result
I4, Lemima 27 about the maximal monotonicity of hemicontinuous mono-
tone operators is derived from Theorem 3.1.

.4 Loceal boundedness and continuity of C-monotone operators. An
operator A : X — 2% iy said to be locally bounded- at we X if there
exists a neighbourhood V of # such that the set A(V) =vu{dy;
e D(A)n V) is bounded in AX*. :

Tuporem -4.1. Let X be o rveal Banach space and let I§ < X be @
conver cone with non-emply interior. Then any K-monotone operator A :
X = 2% 45 locally bounded al the interior points of D(A).

- Lroof. Assunme the existence of a point x, € int D(4) in which A
is not locally bounded. We may suppose that z, = 0 because the H-mono-
tonicity s invariant under translations. Then there exist a sequence
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(z,) < D(4) and a sequence (x)), #fe A, such that #, — 0 and | k(-
— 00 as m.— co. Since K is a convex cone with non-empty interior, we
can find a closed convex cone I, with non-empty interior such that I, <
< int LU {0}. We shall prove that for any . >0 theroexists a z € i, =
= B(0;2p) n (XNB(0; p)) n (K, u (—I,)) such that 3

(4.1) (a)— 2 @f) > —ocoas f - o0

for a certain subsequence (z;) of (x,) (where by B(0; p) we have denoted
the set (e X; o] < p}). Assuming that this is not the case, we shall
derive a contradiction. Lel >0 such that for each z e M o there exists
a_constant ¢, for which the inequality <(z, — 2, > > ¢, holds for all n.
For any natural number &, the set E,= {ze M, <;v,;~ 2y, oy = —k

[e0)
for all n} is closed and i, = l, l1 U7, Since X is complete and I, is closed,

we may use the Baire category theorem. Thus, there exist ye M, r>0
and K, such that B(y; ») < Ei. Since (a, + y, ¥ = e, :13 and
@y — & ) = —ky for any o € B(y; ») and all », we obtain G, + 9y —
— & o) 2 ¢—k for 2eBy;r) and all ». Now, we fix n, so that
loull < v/4 for all u > n,. For weB(0; r/2) and n > -uo,uwe have
& =22, +y —web(y;r) and consequently (w, %) = ¢ — k. Repla-
cing w by —u, we obtain — (u, 2¥> > ¢ — k,. Therefore, |(u, @F)| <
< Ky — ¢ for every w > ny and w € B(0; r/2), which implies the boun-
dedness of the sequence (|l [), which is a contradiction. Thus, we have
proved that for any p >0 there exists a z € [, such that relation (4.1)
is satistied for a certain subsequence (z;) of (). Now, since @, = 0 e
eint D(4), we may choose the number p >0 such that B0; 2p) Oc D(A)
and 8o, its corresponding element ze M, belongs to D(4). ,On the other
113,1_1(1,. as 2z # 0andze K, v (—K,), we have that zeint K U (—int &)
Fu}d for u larg_c enough, 2, —ze€ K U (—I). Using the K-monotonicity
of 4, we obtain {; — 2, a¥) > (a; — 2, 2%y for j large enough and for
any z¥ e Az Since the second term in the above inequality is hounded
from below, we have arrived to a contradiction with (4.1). This proves
the local boundedness of 4 at z, as claimed.

Cororrary 4.1 (+ [6])). If X is « real Banach space, then any monotone
operator A : X — 2%7 is locally bounded at the interior potnts of D(A).
Proof. Theorem 4.1 can be applied, where K = X.

COROLLARY 4.2. Let X" be a real Banach space and let K < X be a con-
vex cone with non-empty interior. T hen, any (o) - monotone operator 4 : X —
= 2%7 45 locally bounded al the interior poinis of D(4). '

Proof. Recall that each (o)-monotone operator is K-monotone gnd
apply Theorem 4.1. '

We shall also give a direct proof of Corollary 4.2. For this. lot 2. €
eint D(4) and let » > 0 such that ]B(;z;(,; r) < I A)? We cousidé:'m[’Tlcg fnj]
weint K such that B(0; r) = B(xy; 1) — a5 < (—w + K) 0 (0 — K)
and we fix p>0 for which @y — pu, z, + pw € D(A). Then, B(0; wr) =
= B(@y; wr) — ¢y = (— pu + K) n (pu — K). Therefore, B(w,; wr) <
< (2g — pu + K) n (#y + pw — K). Next, we fix fed(x, — p,nj and
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g € A(wy -~ pu). The operator A being (o)-monotone, we have (y, f) <
< Lyy a*) < Ky, ¢g) for every wme B(wy; ur), 2% e Az and y € I{. Now,
let 2 be any element of X. Since 2 can be written as ¢, — y, with y,, y, € I,
we geb (yy, ) — ¥y 9 < (& 2*) < (ypy ) — (Y, [y for all e Blay;
ur) and @* € Ag. Using the uniform boundedness theorem, the last ine-
qualities imply that A(B(x,; wr)) is bounded in A™*. Thus, we have proved
the local boundedness of A4 at z, as claimed.

An operator A : D(A) - X*, D(4) « X, is said to be demiconti-
nuous at x, it Az, - Az, (as n — o0) weakly in A*, for any sequence
(z,) © D(A) strongly convergent to z, in X. :

TarorEM 4.2. Let X be « reflexive Banach space and let K < X
be a convex cone with mon-empty interior. et A : D(A) — X*, D(A) < X,
be a K-monotone operator and let x, € int D(A). Lf the operator A is K-hemi-
continuous at x,, then it 18 even demicontinuous atf .

Proof. Let (w,) < int D(A) be such that =, - 2, as n — co. Accor-
ding to Theorem 4.1, the sequence (Aw,) is bounded in X* and, by the
reflexivity of X, passing if necessary to a subsequence, we may assume
that Ae, — aFf weakly in X* for # —» oo. Let 2 be any element of D(4)
for which z — @, €int K v (—int ). Then for = large enough, & —
—x,€ K Uy (—IK) and by the K-monotonicity of 4, we have {(x — 2,
Aw — Aw,y > 0. Passing to the limit, we obtain

(4.2) (o — 5y Az — @)= 0
for every = e D(A) satisfying = — x,eint I U (—int K). Since ;€

e int D(4), to any weint K u (—int I{) there corresponds a #,> 0 such
that @, + tueint D(4) for all ¢ with 0 <? < ¢,. Taking » = =z, -+ tu

‘in (4.2), we obtain that <w, A(x, 4 tu) — a5y > 0 for 0 < ¢ < ?,. Then,

by the K-hemicontinuity of 4 at x, we have that <{w, Az, — af) > 0
for every weint X U (— int ). But since int K -}- (—int K) = X, it
follows that this inequality holds for all w e X. Therefore, Az, = o,
that is A i3 demicontinuous at .

CoroTLARY 4.3 ([9]). Let X be a reflexive Banach space. Then, any
monotone hemicontinnous operator A :D(A) — X*, D(A) < X, 1s dema~
continuous on int D(A4).

Proof. Apply Theorem 4.2, where K = X.
COROLLARY 4.4. Let X be a reflexive Banach space and let I < X be

@ convew cone with non-empty interior. Then, any (o)-monotone hemicon-
timuous operator A : D(A) — X*, D(A) < X, 1s demicontinuous on int D(A).

5. Surjectivity of K -monotone operators. Let X be a real linear
normed space. An operator 4 : X — X* is said to be coercive with respect
to the element I € X* if there exists a number 7> 0 such that ||z[ >7 im-
plies that (@, Aw — k) >0. The operator A is called coercive it <(z,
Axdllz]] - oo as |z - oo.

We shall use the following proposition (see [12, 3.2.8]).
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Lmdyna 5.1, Let X be a finile-dimensional Banach space. If A i X —u

w' X* 48 a continvous operalor which 1s coercive with respect lo the element
T L il
hoe X*, then there exists at least one element o € X such that h — Aew.

TuroreM 5.1. Let X be a reflewive Banach space and let I{ < X
be a convexw cone having non-emply intertor with respect lo the weak topology
on X. If A : X — X* 45 a I-hemicontinuous I-monotone operator which s
coercive with respect to h e X*, then there exisis at least one element @€ X
such that h = Aux.

Proof. Denote by int I and w-int K, the interiors of JC with res-
pect to the strong topology and to the weal topology on X, respectively.
Obviously, w-int K < int K and since w-int K # O, we have w-int K -
-+ (—w-int K) = X.

Let A be coercive with respect to k€ X*. Then the operator By '=
= dx — I is K-hemicontinuous, K-monotone and coercive with respect
to 0. Thus, if one considers the operator B instead of A we may assuine
that h = 0. Therefore, we have to prove that there exists an ., € X such
that Az, = 0. .

Let 7 be the Tfamily of all finite-dimensional linear subspaces II of
X dor which H n int I{ # 0, ordered by inclusion. It is obvious that if
H e &, then the convex cone K n H has non-empty interior in the topo-
logy induced on H. For each H € 4, let J, be the injection map of H
into X and let J§ be the dual projection map (the surjection) of X* onto

H* We set Ay = J¥ AJ . Then, the operatov 4, : H — H* is I n H-

monotone and I n H-hemicoutinuous and, by Theorem 4.2, it is con-
tinnous. Also, A, i8 coercive with respeet to 0. Acecrding to Lemmas 5.1,
there exists an wx, € H such that Auz, = 0. Consequently {wy, As,) =
= (@y, Ayxy) = 0. Then since A i3 coercive with respectito 0, it follows
that there exists a constant ¢ independent of H such that (o] < ¢
for every i e . :

. _ Now, for any H,c # consider the subset Vu, ={2;; H, < H}
of B(0; O). Then the family {Vy, ; H, € #} has the finite-intersection
property. Indeed, it H,, H, e # and we denote by Hy = H, U H,, then
Vi, < Vi, 0 Va, Since X is reflexive, the ball B (0; ¢) is weakly
conipact and thus thereexists an clement 2, € X which belongs .to the
weak closure of cach set Vy, —with I, e 2. g

Let @ be an arbitrary element of X such that o - x, € w-int K U

U (—w-int K) and let I, e 2 be snch that » € H,. Since a, belongs
to the weak closure of Vg, there exists a sequence (z,) < Vpy such that
@, ~ &, (for m — co) weakly in X. We may assume that @ v @, € w-int;
K U (—w-int K) « LU (—K) for all n. Then, by the K- monotonicity
of 4, we have that ' '

(6.1) @ — Byy A) = {0 = @4y Ay

for all ». On the other hand, by x,€ Vg, it follows that therc exists an
H, e sueh that Hy, <« H,, #,€ Il, and Ay, ®, = 0. Then, 2 — g, c H,
and we may write that <o — 2,, Awx,) =<{» — a,, Ay, 2, = 0. Thus,
by (5.1) we find that (@ — x,, dz) > 0 for all n. Passing to the limit
as m — o, we obtain that (@ — zy, Ax) > 0 for every x € X satisfying
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@ = x, ew-int K U (—w -int K). Now, observe that A satisfies all
the assumptions of Lemma 3.1, where the conyvex cone ' = w—int K u {0}
having non-empty strong interior, stands for J. Applying Lemma 3.1,
we obtain Az, = 0, which completes the proof.

If we take K = X, then Theorem 5.1 implies the following well-
known result :

COROLTARY 5.1 (27, [11)). If X 4s @ reflexive Banach space and A :
X' X% 4s a coercive hemicontinuous monotone operator, then A 1s surjec-
tive.

s It is natural to ask if Theorem 5.1 is applicable to (o)-monotone
operators. The answer is negative for infinite-dimensional spaces X, as
follows from :

Remark 5.1. Let X Dbe an infinite-dimensional linear normed space
and let' K -« X be a convex cone having non-empty interior with respect
to the weak topology on X. Let h € X*. Then, an (0o)-monotone operator A :
X = X* whieh is coercive with respect to &, does not exist.

To prove this, let us assume the existence of such an operator. We
shall derive a contradiction. Let x, € w-int I{. Then, there exist af, o3, . ..
et eX* and e>0 such that

V={aeX;|{z— oy <e t=1, 2,...,n} <= K
Consider the convex cone I{; « K, I{, = {ha; €V, » > 0} and denote

S = (M ker a¥. Iy is clear that K* < K and xa, | S < K, for every
i=1

%> 0. Thus, it 2* € I(§, then (wy 4+ 2, a*) > 0 for all z €S and x> 0.

Passing to limit as 2} 0, we obtain that {x, @¥) > 0 for all ze 8. It

follows that <(a, a*) = 0 for all x €§. Hence, S < ker * for every o* € Kf.

Since X is an infinite-dimensional linear space, one has 8 # {0}. Now,

we fix any y € 8, y # 0. For 2> 0, we have x, — dy € K, « K and using

the (o)-monotonicity of 4, we obtain A(ix,) — A(ry) € K* = KF. Hence,

there is-af e K such that A(dy) = A(xe,) — @3, On the other hand,

by », — 0e K we have A(xx,) — A(0) € KF, that is A(xz,) = A(0) +~
+ y%, where y¥ € K¥. Therefore, A(xy) = A(0) | yi¥ — a5 for all A=>0.

Singe yel < keryd n ker aF, we get {y, A(wy) — hy =<, A(0) —

— Ry for all A > 0. The operator 4 being coercive with respect to h, the

inequality (ay, A(%y) — ky >0 must hold for 3> 0 large enough. Henece,

yy A(0) — hy >0 for any yef8, y #0 which is a contradiction because
the codimension of 8 is finite while the dimension of ker (A(0)-h) is infi-
nite.
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