MATHEMATICA – REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 16, N° 1, 1987, pp. 77-80

PEAK SETS, PROPER FACES AND BOUNDARIES

J. RAŞA (Cluj-Napoca)

1. In [1] J. W. Bunce and W. R. Zame have studied the peak sets the proper faces and the boundaries of a linear subspace H of C(X) by using the dual H'; they have proved that a certain subset of the Choquet boundary of H is also a boundary for

Without using H', we shall study similar problems; we shall prove that a corresponding subset of Min(H) — the boundary introduced by B. Fuchssteiner in [2] — is also a boundary for H.

2. Let X be a compact Hausdorff space and let H be a linear subspace of C(X) which separates X and contains the constant functions. Let us denote $H^+ = \{h \in H : h \ge 0\}$. A non-empty subset $K \subset X$ is called a *peak set* if there exists an $h \in H^+$ such that $K = \{x \in X : h(x) = 0\}$. A non-empty set which is an intersection of peak sets is called a *generalized peak set*.

Let us denote by V the family of all generalized peak sets and by W the family of all minimal generalized peak sets. An application of Zorn's lemma shows that every $K \in V$ contains a $K' \in W$. Let

$$P(H) = \{x \in X : \{x\} \text{ is a peak set}\}$$
 $T(H) = \{x \in X : \{x\} \in V\}$
 $S(H) = \bigcup \{K : K \in W\}.$

Then $P(H) \subset T(H) \subset S(H)$.

A non-empty convex subset E of H^+ is called a face of H^+ if $0 < a < 1, f, g \in H^+, (1-a)f + ag \in E$ implies $f, g \in E$.

A non-empty subset E of H^+ is a face iff

- (i) $E + E \subset E$, $aE \subset E$ for all $a \in R_+$, and
- (ii) $f \in E$, $g \in H$, $0 \leq g \leq f$ implies $g \in E$ (see [1)].

A face E of H^+ is said to be *proper* if $E \neq H^+$; this is equivalent to $1 \notin E$.

Let us denote by F the family of all proper faces of H^+ and by M the family of all maximal proper faces; an application of Zorn's lemma shows that every proper face is contained in a maximal proper face.

If $E \subset H^+$, $K \subset X$, let

$$\begin{split} E^{\perp} &= \{x \in X: \ f(x) = 0 \ \text{for all} \ f \in E\}. \\ K^{\perp} &= \{f \in H^+: f(x) = 0 \ \text{for all} \ x \in K\}. \end{split}$$

It is easy to prove that:

(1)
$$K^{\perp} \in F$$
 and $K^{\perp \perp} = K$ for all $K \in V$.

(2)
$$E^{\perp} \in V \text{ and } E \subset E^{\perp \perp} \text{ for all } E \in F.$$

(3)
$$K^{\perp} \in M \text{ for all } K \in W.$$

(4)
$$E^{\perp} \in W$$
 and $E = E^{\perp \perp}$ for all $E \in M$.

2008 In particular, we obtain the state of t

Proposition 1 (see also [1]). The map $K \to K^{\perp}$ is a bijection between W and M. The inverse of this map is $E \to E^{\perp}$.

COROLLARY 1. A point $x \in X$ is in S(H) iff $\{x\}^{\perp} \in M$. Proof. Let $x \in K \in W$. Then $\{x\}^{\perp} \in F$ and $\{x\}^{\perp} \supset K^{\perp} \in M$. This yields $\{x\}^{\perp} = K^{\perp} \in M$.

Conversely, let $\{x\}^{\perp} \in M$. Then $x \in \{x\}^{\perp \perp} \in W$, hence $x \in S(H)$.

3. A set $M \subset X$ is called a boundary for H if for each $h \in H$ there exists an $x \in M$ such that $h(x) = \min h(X)$.

Let Ch(H) be the Choquet boundary of H. Ch(H) is a boundary for H and cl (Ch(H)) is contained in every closed boundary for H.

Let $h \in H$ and let K be a compact subset of X. Denote $h[K] = \{x \in K : h(x) = \min h(K)\}.$

Let ρ be a well-ordering relation in H and let f be the first element of H with respect to ρ . Let us define inductively

The number
$$X_f = f[X];$$

 $X_h = h[\cap \{X_g : g \circ h, g \neq h\}] \text{ for all } h \in H, h \neq f.$

Denote $X_{\rho} = \cap \{X_h : h \in H\}$, Min $(H) = \cup \{X_{\rho} : \rho \text{ is a well-ordering relation in } H\}$.

Then Min (H) is a boundary for H and $Min(H) \subset Ch(H)$ (see [2], [3], [4]).

Let $M(H) = \operatorname{Ch}(H) \cap S(H)$, $N(H) = \operatorname{Min}(H) \cap S(H)$.

LEMMA 1. If $K \in V$ then $Min(H|_K) \subset Min(H)$.

Proof. Let $G \subset H^+$ be such that $K = \{x \in X : g(x) = 0 \text{ for all } g \in G\}$. Let r be a well-ordering relation in $H|_K$ and let ρ be the well-ordering relation induced by r in $H|_K \setminus \{0\}$.

Let $\varphi \in H|_K$ and $H_{\varphi} = \{h \in H : h|_K = \varphi\}$. In every set H_{φ} with $\varphi \neq 0$, let us consider a well-ordering relation r_{φ} . We have $G \subset H_0$; in H_0 let us consider a well-ordering relation r_0 such that $g r_0 h$ for all $g \in G$ and all $h \in H_0 \setminus G$.

Let $f, g \in H$. We put $f \circ g$ if

- a) $f \in H_0, \quad g \in H_{\varphi}, \quad \varphi \neq 0$; or
- b) $f\in H_{\varphi},\ g\in H_{\psi},\ \varphi,\ \psi\in H|_{\mathcal{U}}\backslash\{0\},\ \varphi\rho\psi,\ \varphi\neq\psi\ ;\ \text{or}$
- c) $f, g \in H_{\varphi}, \varphi \in H|_{K}, fr_{\varphi}g.$

Then σ is a well-ordering relation in H. With respect to σ , we have $\cap \{X_g: g \in H_0\} = K$ and, consequently, $X_\sigma = K_\varepsilon = K_r$. This implies that $\operatorname{Min}(H|_K) \subset \operatorname{Min}(H)$.

Theorem 1. N(H) is a boundary for H.

Proof. Let $h \in H^+$ such that $A = \{x \in X : h(x) = 0\}$ is non-empty. Since $A \in V$, there exists a $K \in W$ with $K \subset A$. Let $x \in \text{Min}(H|_K)$. By Lemma 1, $x \in \text{Min}(H)$. From $x \in K \in W$, it follows that $x \in S(H)$, hence $x \in N(H)$. But $x \in A$, which implies that $h(x) = 0 = \min h(X)$.

Corollary 2 (see also [1]). M(H) is a boundary for H. We have

(5)
$$P(H) \subset T(H) \subset N(H) \subset M(H) \subset Ch(H)$$

(6)
$$N(H) \subset Min(H) \subset Ch(H)$$

(7)
$$\operatorname{cl}(N(H)) = \operatorname{cl}(M(H)) = \operatorname{cl}(\operatorname{Min}(H)) = \operatorname{cl}(\operatorname{Ch}(H)).$$

Proof. It remains to prove only that $T(H) \subset N(H)$. Let $x \in T(H)$; denote $K = \{x\}$. We have $K \in V$ and $x \in \text{Min}(H|_K)$. According to Lemma 1, $x \in \text{Min}(H)$. Since $T(H) \subset S(H)$, we deduce that $x \in N(H)$.

Corollary 3. If max $(h, 0) \in H$ for each $h \in H$, then

$$T(H) = N(H) = M(H) = Min(H).$$

Proof. If $\max (h, 0) \in H$ for each $h \in H$, then $\min(H) \subset T(H)$. According to Corollary 2, $T(H) = N(H) = \min(H) \subset M(H)$. Let $x \in M(H)$. Then $x \in \operatorname{Ch}(H)$ and $x \in K \in W$. Let $y \in K$, $y \neq x$. Let U be an open neighborhood of x such that $y \notin U$. Since $x \in \operatorname{Ch}(H)$, there exists an $f \in H$ such that f(x) < 1/2 and f > 1 on $X \setminus U$. Let $h = \max(f - f(x), 0)$. We have $h \in H$, $h \geq 0$, h(x) = 0, h(y) > 1/2. If we denote $K' = K \cap \{x \in X : h(z) = 0\}$, then $x \in K' \in V$ and $y \notin K'$, i.e., K' is a proper subset of K. This contradicts the minimality of K. Hence, $K = \{x\}$ and so

REMARK 1. Let $H = \{h \in C[0,1] : \text{ there exists an } a > 0 \text{ (depending on } h) \text{ such that } h \text{ is constant on } [0, a] \}$. Then P(H) = (0,1], T(H) = [0,1].

It is not difficult to prove that if H is finite-dimensional, then every generalized peak set is a peak set; in particular, P(H) = T(H).

REMARK 2. Examples in which the inclusion $\operatorname{Min}(H) \subset \operatorname{Ch}(H)$ is strict can be found in refs. [3], [4], [5]. An example of a linear subspace H for which the inclusions $T(H) \subset N(H) \subset \operatorname{Min}(H)$ and $M(H) \subset \operatorname{Ch}(H)$ are strict can be found in ref. [1], p. 228.

REFERENCES

- [1] Bunce, J. W., Zame, W. R., Boundaries for subspaces of C(X), Quarterly J. Math. Oxford, 25, 227-234 (1974).
- [2] Fuchs steiner, B., Bemerkungen zu den Minimumsätzen von H. Bauer, Arch Math., 22, 287-290 (1971).
- [3] Fuch ssteiner, B., Hacken broch, W., Maximumpunkle, Arch. Math., 23, 415-421 (1972).
- [4] Fuchssteiner, B., Neumann, M., Small boundaries, Arch. Math., 30, 613-621 (1978).
- [5] Raşa, I., Small boundaries for subspaces of C(X), "Babeş-Bolyai" Univ., Fac. of Math., Cluj-Napoca, Preprint no. 2/1983, 129-130.

walls all city to be making in a city of the first of the same and city of the same and city

According to reaching a real New with the set of the Mark Res are all the set of the set

milmanda ika n na saine giuli il 1879 e A. i uch il denestii - (177 year 1897 which il mark il in a manna il denestii il an il denestii il an il denestii

 w_{ij} by w_{ij} and w_{ij}

Received 19.XII.1986

The Polytechnic Institute Dept. of Mathematics Str. E. Isac, No. 15 3400 Cluj-Napoca Romania