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1. Introduetion. Leindler [I, Theorem C] proved that if

(1) IS w8, — f1° | < oo

=1\
then the » th derivative [ of f belongs to the Lipschitz class Lip(a), where

1 & )
(2) Ji B ay -+ Y, (@,co8 ne + b.sin n),

n=1

$>0, 0 <« < 1, r being a nonnegative integer, and 8, is the par-
tial sum of the FWourier series of the 2w periodic continuous function f(w).
Leindler also proved that under the same conditions, f* and fo
belong to the little class lip (), where for the special value 3 =2 and
0 < « <1, he proved that both f© and [ belong to ‘Lip(e) for
any positive integer r, and for § =2, « =1, o7 and f@ belong to Lip(1).
" The purpose of the present paper, among others, is to' link - those
results of Leindler with theorems on the order of magnitude of the Fourier
coefficients of f.

2. Delinitions and Notation. T this work L7(71') denotes the L” space
of the 2r periodic functions on the circle group 7T. I" denotes the
p-dimensional torus group, | - {l, and || . [l stand for the L7 and supremum
norms, respectively.

For convenicnce, we shall be dealing with the complex form

f(J?) — Z (;“@—iux

=0
instead of (2), and for functions of several variables we write
J(w) = Jlay ooy @)
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DEFINITION 2.1, Let f(x) belong to IP(T). Then the Lipschite class

Lip («, p) s the collection of those Sunctions f(x) tn LP(T) such that
I -+ h) — fa)l, = 0 (h%)
0 <<a<<l as I'— 0.

The Little Lipschitz class i
attle Li 7 class Lp («, p) can be obtained by replacing O wi
If, instead of using the first difference, we el.nf)lovp ﬁ;lén%'lfl)l“élti}t?fg:

rence. with step A of f,

Afte) = 3 (== (1) o+ in,

=0
then we can write -

| ALfIl, = O(h%)
and

1AL, == o(h*),
respectively.

3. Main Results. Now, we state and prove

TuworEM 3.1, Let f : .
114 a0 B 'Ot 1'(‘,17) b(;/ a 27‘C neric 'l'. S ni .
(1) holds ; then AN / rodie conlinuons funclion such thai
) ; the Fourter coefficients ¢, of J belony bo the sequence space 13 for
1 Y

e S T L I e T 1 j g 4
plr 4+ « 4 1) — 1 b <
1 <p <2
Proof. It (1) holds, then the rth derivati
wl pegrdof.elf (1) , then the »th derivative ¢ of f belongs t
i)lli’scll)léltgn Oovlatss LLlp( a)y 0 < a < 1, sinee by Leii{dlur {Uef?})lzbl}io) gl)e
Bt e c&f;ssoI .1p( ). 0 < « < 1, and hence f is contained in the \Ividel,"
/ 4p (e, p), 1 <<p < 2 on the eircle group. This means that
(3) If7(@ 4= k) — fO(@) |, = O(h*)
0 <o <1,as k-0
However, it was proved [2, Theorem 2.6 p. «8] that if g(a) € Lip(«, p)
o . )

over ihe circle oroun 7', tl ity T s g
{ . b L 1en lt)ij fourlier coe icie - ¢ -
’ LI 1 fic long
quence space P it SR 'IOHLE’. Ou belo 8 to the 5C

*;-g)~—1

) P
—— < B = =
| p+oap—1 ¢ p—1
In tact, we proved that
N e 1—Beaal B
(4) Y G <oy TPy

Ha=x]

as N — oo.
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Now, it is very well known that if the Fourier coefficient of f is Cy,
then that of its 7th derivative f@ is equal to n'Cy. Hence, applying (4)
to the Fourier coefficients of f°, we obtain

N 8
(5) ¥ e, P = O([N' P,
n=1

An appeal to a lemma on the partial sums of sequences [3, p. 101}
shows that (5) is equivalent to

(6) ¥ [0,]P =0

n=N

and the right-hand side of (6) is bounded as N - oo il

1-BoB 1Bt

]

1—-B—af5—?‘[3+£<0
P

or, equivalent ly, it

P ,
<p<p

, pr et 1) —1
and the proof is complete.

Wo remark first that it » = 0, the last result reduces to o theorem
proved in [2, Theorem 2.6, p. 28]. Wo also add that the special choice
3 — 2 and « — 1 enables us to prove theorem 3.1 for both f@ and its
conjugate f®, whereas the restrictions 5 =2,0< o<1 enable us to
prove the theorem for f (See [1, theorem C and thereafter]), bul we
shall not follows this course here any further.

3.2 The special ease p = 2. This particular choice of p == 2 indi-

cates a degree of symetry in theorem 3.1.-In [2, Theorem 2.17, p. 42] we
proved

THREOREM A. Let f(2) belony to LXT). Then the conditions
(7) If(w -+ h) — f(@) ]z = O

0<a<lash -0

and
(8) S |Cul2= O[N]
|n|»N

as N — oo, are equivalent.
Applying this result to f@, we can now prove

TaROREM 3.2. Let the conditions of theorem 3.1 be satisfied with p=2.
Then

2(oc»|»7)_|

3, |C,l2 = 0[N~

m»N
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as N — oo,

Proof. In this case, we use Parseval’s identity and obtain

Z 'f’-'(r) ,2 — O[N“Q“],

w=1

where 0= ¢, and, hence,
AT
Y [0l le,f* =O[N~%),

=1

which is iy esired esti i i :
— 1016%111\/&161113 to the desired estimate by applying Duren’s Temma,
Note 3.3. The special situation § — 2 ‘ B !
situats =2 and « =1 iy'of no genui
value for theorem 3.2. This is because our orici (heor Theorem.
1€ W | b riginal € "¢ ¥
T %42-] O ot e R iginal theorem [2, Theorem,
e also add that f* 8¢ Lip(«), 0 < o < 1 is equiy ; i
also . ‘ . cquivalent to saying
that the »th difference of f belongs to tip (o) for a'=» l—}— o, anhd hgnscr?cl)i%
can formulate theorems 3.1 and 3.2 in terms of higher . differences and
obtain exactly the same results. : i

A 3 n . .
" to/*.f 1411}101_el10nsf0n T”.lIn this section, we generalize theorems 3.1 and
.2 to functions of several variables. For simplicity, w ch, the 1
3 . - S, city, we ske ;
for functions on 7. brotsuwe skebohithe, restlts
Let f(x, y) be a 2 periodic and continuous function in @, ¥, let 0<C
Lfa, locé;1 1ocg ?tll’ 7 11, sz lbei?g positive integers. §,,, will stand for the par-
M of the double Fourier series of f. Then conditi i e
! . Then condit :
PSR Ui dition (1) in this case

(9) ” Z Z m(’rl‘“l)a"l 7@(’24‘“2)8—][ Sm MELE f‘,‘?“< 0%}
and this would imply that the partial derivative of order », in-x is in
Lip(«;) and the partial derivative of order Ty in 4 Rl belongs to
Lip(oy). il |
With these modifications, the proofs of theor
. . orems 3.1 and 3.2 ca

be carried almost verbally. The conclusion of theorem 3.1, for examglaﬁl
well asserts that the Fourier coefficients O of f belong to 1 wherg
B = max (B, B,) where i ’ ’

P

s 7_ —< B, < 5
Py F oo 1) — 1 a
P T
= — S0 P
; Bt oy +1) —1 2
In other words C,,,el® for
P

| e o
P Fafl)—1 PSP
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ot

for
(4 o) = min [(1y + )y (1 + a3)]-
The special case of L¥T?), i.e. p = 2, leads, however, to the equi-
valence of the following estimates
| (;'m’“ \2 = ()[]1[—2(n+a,)N—Z(rg-l.-ag)]

[ >M Wi>N
[ nCpy |2 = O[ M—20ntm) N2=Caten)]
lm!‘,\ﬂ[ g N g i
| MOy 0|2 = O[M2-2nte) N—Ante) ]
lmfey >N
Finally, we remark that for functions on L?(T"), the lines of thoughts
are clear and the proofs are direct but it would be rather complicated to

produce them here.
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