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Abstratt. We prove an inequality of the form
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where m> r > 0, n>> s > 0 are integers, [ is a real-valued [unction on [0,1]* = [0,1] X [0,1]
such that D™® [ is continuous (here D™¥ [ is the differential operator of order (r, ), i.c.

a,.'s f‘(ﬂ:’ y) . !
Dréif = ———2" |, By , is the Bernstein operator of order (m, n), o(g;.,.) is the first-
- Oar 9y® ’
order modulus of continuity of the bivariate continuous function g aud ¢ is a certain real-va-
lued funection on ™N? = MN x N (here, N = {0, 1, 2, ...} and [[.[[ is the supremum norm).

This inequality improves an inequality established in 1974 by Ion Badea [1]. Because

t (0, 0) = (1390 4 837]/6—)/2916 ~ 1.1797746 ..., the above inequality extends on simultan-
cous approximation another inequality due lo the [irst aulbor [2].

1. Introduction. Let f be a real-valued function defined on [0, 1]* =
= [0, 1| X [0,1] and let m, n be two positive integers. Let B, , be the
Bernstein operator of order (m, n) given by -

m "

Bu(f5 »y) =Y, Y fG@fmy 3[1) P, @) P, Y,y

i=0 j=0
where
Pri = (’;)u (1 — uyp,

" For every integer », s >0, we denote by D" f the differential ope-
rator of order (7, ), given by

D@ y) = LHEY,

ox" oy’
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and by O [0, 17 the linear Space ol real-valued funetions on [0, 172
such that D™ p ig continuous.

From one of 1. . Kingsely’s theorems [7], we know that the Bern-
stein operator hag the broperty of simultancous approximation, i.e. for
every n, s e N = {0, 1, 2,...} and fegrs [0, 17% we have
(1.1) im DB, , fw, y) = D fra, 4,

2,00 ~300
uniformly on [0, 172 -

Quantitative versions for relation (L.1), involving the first-order
modulus of continuity w(D"s fi+,.), were given by many authors ;
firstly by D. D, Stancu [147] in 1960 and then by G." Moldovan and T,
Rip [11]in 1966 and T, Badea [17in 1974,

The quantitative version of (1.1) from [1] became, for y — ¢ — 0,
the following inequality which was tirst proved in 2/: .

1 1
(L.2) - Bm.ﬂf” S (2K — 1) o (.f’ Vo= >:) ’
N " Va
where [[-]] iy the supremum norm and J — (4306 -} 837 ]/67/5832 -

Y 1.0898§773 -+ Is Sikkema’s constant (We note that 2 — 7 — (1390 -+
+ 837 16,2916 ~ 1.179774¢ ...) (see [13]).
Inequalities weaker than (1.2) were given by A. T. Ipatov [6] and
G. Moldovan and I. Rip [117] Tor general estimations of this type, see
also Moldovan [10].
v The purpose of thig paper is fo improve the quantitative assertion
from [17 such that for 7 =8 =0 we obtain again Inequality (1.2).
Tinally, we note that the univariate similay problem was conside-
red by many authors ; see e.g. Stancy [147], Moldovan [9], Badea (1],(3],
Knoop and Po ttinger [8] and the recent references of Gonskay, [5] and the
authors of the present Dbaper [4],

2. Preliminary resulgs, We shall need some preliminary results in
our consideration.

Leyva 1 ([127). If r, se N, then for every  non-negative numbers
Sy g Ay Agy we have

© (Drf; 281y A85) < {1 + max (aL,] Ay [) (Dt Opy ).
In this paper, JA[ is the greatest integer being smaller than 2.
L 2. If feQrs [0, 192 and M>r, 0 >8, we have

AL S YN 51 ! = _Vji Ei Psf . _L__ .__1__. LM s
1D~ L7,f.,z/11<(24 3ty )e(m o= ey ) R,

. (r -—— 1 8 — ~] o
where ) :’;,Sﬂ(f) o ll'la/X{& __1 2 3 Sﬁ_ _)} Ill)lni/ ‘ !._
m n
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Proof. It is known [14] that

Memt =8

Drs i 7,7 ), -8,7 7)
D By f(@, y) = O(m, 1) Cln, 5) Y Z D (Eiy 05) Dincra(®) Pacs,s ()

i=0 j=0

where ifm < & < (i 4 r)[m, jim < 0; < (j -+ s)/n and

- kY. N —
O, v) = H(l —~) itv > 2 and C(u, 1)
k=1

W
ity 3 (@) = 1, we can write :
Using this formula and the equality 1';) P dx) ;
m <771—1 N--5 D,-'sf(w ?/) .
(-2-1) le.f(w; ?/) - D Bm,n-f(m) ?/)’ 1.;0 EO , )

— D™ f(&i 0)| Py (®) Pasy () + {1 — C(m, 1) Oy 5)} ||D™* f]].

Firstly, we prove the relation

rir — 1) s(s — 1)}‘

(2.2) 1 — C(m, ) C(n, s) < max{ —— "

Because 0 < CO(m, r) < 1, we have |
(2.3) 1 — O(m, 1) O(n, 8) < {1 + min (C(m, »), O(n, s))} %
X {1 —min (O(m, 1), C(n, s)} < 2{1 — min (C(m, ), C(n, 3))}.

r(r — 1), ' _
i i ) € ——1n (2.3) (see [147]),
Moreover, using the inequality 1 — O(m, r) < b (2.3)

we gel
3'_-(,1*_1), it O(m,7) < O(n, s)
. <
(2.4) 1 = Cm, 1) O, 5) < ‘E(_S;ll, it C(m, 7) > C(n,s)
n
{m-— 1) s(s.—_l_k}. :
< Max {———"y——
m n

\ relation (2.2) is true. )
,‘].hus,]_\TloeW, we (estimate the sum S(x, y) given by

@5) 8@, 9) = % % 1D, ) — D [Ey 0] Do) Do sy).

i independent of 7 and j.
two real numbers which are in e
C]D-J}elfls&;a.p%l?ir?gba(; inequality derived from Lemma 1, we find that
, .

ID"f(, y) — D"*f(Ey 0)] < o(D™F; |2 — &, |y — 8]) <
<L+ |2 — &34 Jy — 6] 37 o(Df; 8y, 8,).

i=0 j=0

(2.6)



14 I. BADEA and C. BADEA 4

Using inequality (2.6) above, we gel

m—r

(2.7) S(@, y) < o(D™f; 1, 83) {1 + 81! hX 2 — Eilpmori(®) 4
1=0

-+ 82‘1 Z |7/ — oj’pn—s.:ﬁ' (.’/)} *

J=0

But in the proof of Lemma 4 of our previous paper [4], we established
that
m—r 1 P

2.8 — S| Pm—r,\v T —— =
(2.8) EB lo — Ei[pm_ri(®) T — =i

The following estimation follows from (2.7) and (2.8):

29) Sy y) < oD, 8) {1 + s;l(flf_k f-)+

2l/m—r m

1 §
Pl (= e WSEnS L SLaR | S
i o2 (ZVM — 8 1 7 )}

S TS R
s — 7l Ry V=i

S(x, ) < (2 —FL‘M__i+‘ﬂ/_KA) of (Dr,slf; ilj_:, _L_).
4 i ]/m_ 3 Yn—s

(210)

Choosing 3, = in (2.9), we obtain that

rl/'m

ploying inequalities (2.1), (2 2) a,nd (2.10), we have the desired result.
The last preliminary result is '

V ([4, Proof of Lemma 3)) and em-

Keeping in mind that

LeMMA 3. 1f fe C"°[0, 11> and m>17, n> s we have
|D"f — D™ By afll<
1 1

m "V —s

< {2K + max ]]/1 2 1,1 Vs/20) }w(D’ f,v )-1— M7z f)

Remark. For r = s = 0, the above inequality becomes (1.2). Lemma 3
is a refinement of Theorem 2.3.5 from [1].

Proof of Lemma 3. The notations are similar to the notations used

in the proof of Lemma 2.
We have, from (2.1), (2.2) and (2.5), that

(2.11) D7 f(@, y) — D" B f(@, 9) | < Sy 9) A+ Ma0()-

The sum S(z, ) can be expressed as

(2.12) 8@, y) = Sy(®, 9) + Salw ),

41
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where

Sy, y) Z Z D”fa y) — )”f( __j__)

»0]~0| m—r n-—Ss

Prneri(%) Pus,i(Y)

and
8o, y) = |
D" “ g j s
l m —r g ) (i D “f<€1'7 0]) 'pm~r.'i(w) pﬂ-—é‘,j(y)'

M=t H—=s

=3 Y

1=0 j=

n — 8

In [2], one of the authors proved that

213) Sy ) < @K — 1) (]) e L )
Ym —» V% — &
We now estimate S, (2, ¥).
In (3] and [4], we proved the following inequalities :

i r | g q
Rt Ei‘ <) 2 ,‘ s Iy ‘ Beemu%o—qv Vi, we
m— 7 | m |n—3s n 2
. Vo
n ZVn —q
using Lemma 1, we can write

have , for m>gq. Applying these facts and, moreover,

(2.14) (2 y) < (D R L FEA
A?( ’./) & .f’2v”2_7‘,2vn_8 <

< {1+ max (172 [,11/8]2[)}w(l)""‘ . T —1—)-
Vm —7r Yn—s

" Adding inequalities (2.13) and (2.14), we get the desired result.

i 3. Main Theorem. We arc now ready to prove the main result of
this paper.

We shall consider the following real-valued function #(r, s) defined

on IN X IN by : ¢r,s) =2 + (W 1%9), if min (r, s) = 0 and thereexists

a ¢ such that ¢ <max (V l/s) <q-+2K —2, and t(r, s) = 2 +

+ max (_]\/1' 12 1,] ]/s /2[) elsewhere in IN?, where K =~ 1.08988733 ... was
defined in the first section.

Our main result is the following

TurorEM. If fe C™*[0, 112 and m>r, n>s, we have

1 1 —
Vm —r "Vn —s ) + M

D = DBl < 5y 9) 0 D7
(3.1)
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Proof. From Lemmas 2 and 3, we get that (3.1) is true with

g(r, §) = min {2 ne Q+K;;, 2K -+ max (1r/2[,] ]/3/2[)}

instead of (7, s).
It is thus sufficient to prove that #(r, s) = g(r, 8), i.e.

(3.2) 2 +V2" +V7S < 2K + max (Wrj2 [,] Vs/2[)

if and only if min (7, s) = 0 and there exists a geIN such that

.q<max(ﬁ Vs

o ?) < q-+2K —2 ~ g+ 017977466 . . ..

Withou_t loss of generality, we may assume that max (r, 8) = s.
First, we consider the case s = 4¢2, where g€IN, 1.e.

2

max (

In this case, we have ]V§/2 [=]q[ =¢q—1.
In this situation, (3.2) is equivalent to

(3.3) 2+K27i+q<2K+q~]..
or to
(3.4) M2L < 2K — 3.

But 2K — 3 < 0 and, thus, (3.4) is not true.
Finally, we analyse (3.2) if there exists a ¢ € [N such that

q<max(g, ]L;—):V?S<Q+l-

In this case, ]V:s—/2[= [ Vs_/2] = ¢, where, as usual, [.] is the integral part.

In this situation, (3.2) is equivalent to

Ir

(3.5) e L FESS LT
2 2 :
or to
(3.6) - ]%szzf—zju_y—l%-
We suppose that (3.6) is true. Because ¢ <L2S—, we have—zr—<

<2K — 2 = 0.17977466 ... ; hence, r = 0.
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In this situation, (3.6) becomes

(3.7) l/zis 2K — 2 + q.

Thus, we have proved that (3.2) is true if and only if » =0 and
there exists a positive integer ¢ such that ¢ <y2i < q - 2K — 2.

The proof of the main Theorem is now complete.
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