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Abstraet. The main purpose of this papar is to give some rapresentation theorems for the con-
tinuous lincar functionals on smooth reflexive Banach spaces by use of the semi-inner-product
in the sense of Lumer or Tapia {4], [7]. i

Introduetion. DEFINITION 1 ([4], [1] p. 386). Let X be a real or
complex linear space. A mapping (.,.),: XXX — K is called 2 semi-
inner-product in~ the sense of Lumer (L-semi-inner-product), if the
following conditions are satisfied :

(1) (@ + 4, 2L = (2, 2)r, + (9, 2)1; @1, z€ X,
(i) (M Yy = Moy y); AeK, @, yeX;
(iif) (2, @), >0 if @ 5 0;

(iv) (@, y)l® < (@ @) (9, Y3 @ y€X;

(v) (@, W) = A&, yh; AeK, w yeX.

-1l
We note that the mapping X s 2 +— (2, )12 € R, is a norm on X, and

the functional given by X & ALl (2, y), € K is a continuous linear functi-
onal on the normed linear space (X, || - [[) and I|f, | = J|y||.

THEOREM A ([6], [1] p- 386). Let (X, [I.1) be a normed linear space.
Then every L-semi-inner-product which generaies the morm is- given by

(1) (% 9 = @), 2> @ yeX,
where J is a seclion of duality mapping on X.

JOROLLARY (|1] p. 387). Let (X, ]|+ ) be a normed linear space. Then
(1) there exists a unigue L-semi-innér-product which generates the norm
L aff (X011 s @ smooth normed linear space
(ii) an L-semi-inner-product on X which generates the norm || - | is a scalar
product off (X, || - ||} ts a prehilbertian space.

Further on, by using the notion of the continuous I-semi-inner-
product, i.e. an L-semi-inner-product which verifies the condition

(©) }irgl Re(y, # + ty), = Re(y, @), z,y e X,
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a characterization of smooth normed linear spaces will be established
([1] p. 387).

TaeoreM B. Let (X, | -]) be a normed linear space and let ( ' h be
an L-semi-inner —pioduct whwh generates the norm )| - |l Then (-, ). 18 con-
tinuous tff (X, |- 1) is @ smooth normed linear space.

DEFINITION 2 ([7], [1] p- 389). Let (X, ]| - [[) be a real normed linear
1 . .
space and let f: X - R, f(x) = 7—2-]| x]?, xeX. Then the mapping.

(@ Y = Vi f)y) 2 = lim /¥t ) —Jy)

£10 t

@,y € X, 1s called a semi-inner—product in the sense of Tapia, or a T-semi-

inner- ploduct
Some properties of the T-semi-inner—product are given by ([1]p. 390):

(1) (@, 2 )1 — ||73||2 weX;
(i) [y g)e| < ll2lf flyll, o, yed;
(iii) (e, B?/)r = ap(x, y)r if «f >0 and ®, ¥ € Jx

iv) the 7-semi-inner-product is subadditive and continuous in the first
argument.

ToworeM C ([6], [1] p. 392). Let (X, |- ) be a real normed linear space
and let € be the set of all L-semi-inner-products which generate the morm
| - {|. Then we have
(2) (@, y)e = sup (@, y), @,y X

(s :)y,E8

CoROLLARY ([1] p. 292). The semi-inner-product in the sense of
Tapia is an L-semi-inner-product which generates the norm || - || ff (X, |- 1)
is a smooth normed linewr space.

It is well known that the normed linear space (X, || ) is a smooth
space itf the norm |- || is a GAteaux differentiable funection. on X—{0}

THEOREM D. ([1] p. 392). Let (X, || |) be a real normed linear space.
The following sentences are equivalent :

(i) the norm || - || vs Gdteaux differentiable on X — {0} ;

(i1) (2, )y = (@, Y)oy o €R, @, y€X;

(iii) (0@, Y)r = @, Y)r, 2 €R, 2,y € X;

(iv) (o + Pys 2)e = (@, 2)2 + P(Y, &)y o, BER, @,y € X.

Further on, we shall present the representation theorem for the
continuous linear functional on a real normed space established in [7]
by R. A. Tapia ([1] p. 400).

THEOREM K. Let (X, [.|]) be a real normed linear space. Then the
following sentences are equivalent :
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(1) (X, [1-1l) 7s @ smooth reflexive Banach space;
(ii) for every fe X*, there exists an x,€ X such that
(3) J(@) = (@, a)ny Ifll = llosll, 2€X

In ref. [6], I. Rosca introduced the following definition (see also
[1], p. 401):

DEFINTPION 3. An L-semi-inner product (-,:);, has the Rieszrepre-
sentation property itf for every fe X* there exists an z,€ X such that

(4) (@) = (% @)y, IflIl = llosll, ©e.X.

Finally, we present the representation theorem due to I Rosca [6]
(see also [1], p. 401):

THEOREM K. Let (X, ||-|)) be a real normed linear space. Then the
following assertions are equivalent :
(i) There exists a swrjective section J of duality mapping on X ;
(ii) there exists an L-semi-inner-product on X which generates the norm and
which has the Riesz-representation property.

COROLLARY. Let (X, ||-1]) be @ real normed linear space. Then the follo-
wing assertions are equivalent :
(1) (X, |||} s & smooth reflexive Banach space;
(ii) there ewists a unique L-semi-tnner-product on X which generates the
norm ||+ || and which has the Riesz-representation properly.

1. REPRESENTATION THEOREMS IN SMOOTH REFLEXIVE
BANACH SPACES

In this section, (X, ||+ [|) will be a normed linear space over K, where
K is the real or complex number field.

1.1. LuMmyMA. Let (X, || |I) be o normed linear space and let (-,)p an
L-sema-tnner-product which generates the norm ||-|. Then the following
sentences are equivalent : - ?
(1) (&, |- 1I) i8 @ smooth normed linear space ;

(i)  for every x, y € X, there ewist the limits

Re(z, @ + ty)y, — @, o)y
‘ t
Proof. ‘(i) = (ii)”. If (X, || |l) is & smooth normed linear space, then
hm Re(y, z + ty)L = Re(y, ©),, for every @,y € X.
On the other hand, we have
o Aty > — )lofi* _ Re(®@, @ + ty), — (¢, @)y
t ) t
for every #,yc X and {eR, ¢ # 0.

(1) lim Re(y,  + ty), lim
{0 -0

(2) +Re(y, © + ty),
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Since the norm is Gateaux-differentiable on X - {0}, it results that
the limit lim Re(z, & + ty), — (v, o),

-0 ¢

exists for every a, y e X.

6Cas

if) = (i)”. Tt is evident by relation (2).

1.2. LeMMA. Let (X, |[-|) be a smooth normed linear space and let

() ) be the L-semi-inner product which generates the norm ||« ||. Then we
have
(3) (4, )z = Re(y, @), = lim @ &+ W — Jlo]*

10 {
for every z, ye X.
Proof. Let us consider the mapping [-,],: XXX — R given by
[, 1, = Re(y, «),. Then [-,-], is a real L-semi-inner-product -~ which
generates the norm. Since (X, || |) is a smooth normed linear space, it
results that [y, «], = (y, #); for every 2, y € X.
On the other hand, by relation (2), we have

20y e i I Befotaiitaty)o-6) ) 2 |2

-0 t

O [% x]L

from where (3) is immediate.

Let (X, |- [) be a normed linear space over K and let (-,-), be au
L-semi-inner-product which generates the norm ||- |).

1.3. DEFINITION ([6], [1] p. 401). The clement a € X is called L-ortho-
gonal over the element y € X iff (y, #), = 0. We note that aLy.

The following orthogonality properties in the sense of Lumer are
evident :
i) 0Lz, «10, xcX; N
(ii) oLy = 2 = 0;

(i)  «€K, Ly = av Ly.

1.4. LEMMA. Let (X, |- 1) be a smooth normed linear space and let
(-y) be the L-semi-inner-product which generates the norm ||-|. I T for every
relK we have
(4) e -+ 2yl = [l
then
(5) Ly,

Proof. a. Let » =1{eR. Then, we have
le 4ty l* — llz[* = 0, teR.
Applying the L-semi-inner product properties, one gets

(6)  Re(w, o + ty)y — (2, @)y, + (Re(y, @ + 1)y > 0, t&R.
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It >0, we have
Re(z, ® + ty)s, = (@, )y

+ Re(y,e + ty), = 0.

1
If t — 0, t>0, we obtain Re(y, ), > 0.
Let t == —y, u.>0 in (6). Then we obtain

Re(w, @ + w(—9))e — (@ @) + p Re(—y, @) + (=¥ > 0

from where that Re(—y, @), > 0 is immediate.
But Re(—y, ), = —Re(y, #), which implies that Re(y, #), = 0.
b. Let » =1t, teR. Then we have

(T)  Re(w, 2 + Uiy)) — (@, @)y, + ¢ Reliy, @ + i)y > 0, 1€ R.
Putting 2z := iy, from (7) we obtain
Re(w, -+ t2), — (@, @)y + t Re(z, & +t2), = 0, t€[R,

which implies that TRe(z, z), = 0. _
But Re(iy, 2), = —Im(y, 2);, and then Im(y, ), = 0. We obtain
(y, )1, = 0 i.e. wLy. The lemma is proven.

1.5. DErNmrion. Let (X, [+ |) be a normed linear space and let
(*y+ ), be an L-semi-inner-produet which generates the norm . T4 cX
is a non-empty set, then we denote by A" the set given by

Al ={x:2e X and xly, for every ye 4)

Tt i easy to see that 0e AY; A n 4% =0 if 0 6{1 and « € K,
@ € A¥ implies that «x € A*. We remark, that in general, A* is not a linear
subspace in Y.

Further on, we shall establish a representation theorem for the
clements of a smooth reflexive Banach space which generalize a well-
known result at work in Hilbert spaces.

1.6. THEOREM. Let (X, |[-]) be @ smooth reflevive Banach space
and let (+,-)y be the L-semi-tnner-product .which generates thg NOTNY ||--|l.
Then for every E a closed linear subspace in X, and all x € X, there extst
x' e B and x'" € B* such that :

(8) v =g -+ &
Proof. Let B be a closed linear subspace in X and let & be an element
of X, ; a .
If zel, then v =a 4+ 2" with o'’ =2 ¥ and 2" =0 ejET.
If « ¢ K, then there exists an element o’ € F such _tha.t d(x, B) =
= d(w, 2') = | — &’||. Putting 2" =z — 2/, we obtain

[ + gl = o — @ + Wl = llo = (@ — W) > o — &'l = l}a”"|
for every yw € £ and xe[K.

Applying lemma 1.4.T.. we obtain #" Ly, for every y € E, which means
that »" e B"
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1.7. REMARK. If F i3 a proper closed linear subspace in X, then
there exists an wx,€ E* such that x, # 0.

We can now prove a representation theorem for the continuous
linear functionals on a smooth reflexive Banach spaces over the real or
complex number field.

1.8, TuroreM. Let (X, |- 1) be a smooth reflexive Banach space and
et (-,+)y be the L-semi-inwer-product which generate the norm |- |. Then,
for every f e X*, there exists a wye X such that
(9) J() = (@, up)ey Il = lusll, X

In addition, if f # 0, then the representation element w; is given by
(16) Ur = ﬂw—)w

ffew |2

where w € Ker(f)" and w # 0.

Proof. Let fe X*. If f =0 and putting u, = 0, then relation (9)
is satisfied. If f = 0, then ker(f) is a proper closed linear subspace in X,
and there exists a w, € Ker(f)" such that w, # 0.

Let weKer(f)¥, w # 0 and x € X. Then, we have

f@yw — f(w) » € Ker(f),
which implies that wL(f(z)w — f(w)x), We obtain

(flzyw — flw) , w)y, = 0

for every x e X, from where it results that flw) = Jw) (x, W), ©< X,

it [[eo[*
- a0 el ‘ o -
Putting u, = o w, it results that f(x) = (@, us)L, v € X.
w
On the other hand, we have
If(W)l = [(=, uf) | < llfl fusfl and
u
Il = sup DL 5 Wy,
o [l Il [fe |l
which implies that ||f|| = |lus.

The theorem is proven.

1.9. OBSERVATION. This theorem extends the implication ‘“(i)= (ii)"’
of Tapia’s theorem to the complex case and provides more information
in connection with the representation element ;. We also note that
if X is a Hilbert space, one gets the Riesz theorem with a similar proof.

1.10. CorROLLARY. Let (X, [|- ) be @ smooth reflexive Banach space over
a complex field. Then, for every f € X*, there ewists @ w, € X such that

(11) J(w) = (@, ug)e — (i@, wp)r, Pl = llesll, @ € X

~1
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Proof. It is casy to see that (a, ), = Re(w, y), — 1 Re(iw, y);, for
every z, y € X. But Re(x, ), = (2, y)r (see lemma 1.2.L), and applying
theorem 1.8.T, the corollary is proven.

1.11. CorOLLARY. Let (X, |- 1)) be @ smooth reflexive Banach space over
a complex field and let (-,+), be the L-semi-inner-product which generates

the norm ||-||. Then, for every f e X*, there cxists a u, € X such that
- 2 Relw 3 1 A — . 112
f(w> = lim Re(u’f? s I_ tl‘ ||uf” —iHm I{"(ﬂf! Wy _I_ it a }L ””!H
10 1 t
(12)
zelX, and
(13) o AIf = e ]l

Proof. By lemma 1.2.L, we have

) : ) £ o
(‘7;; ?/)1 = lim Re(‘q/’ Yy i tm)f‘ ”y”

t—-0 A

and applying corollary 1.10, we obtain (12).

2. REPRESENTATION THEOCREMS IN SMOOTII REFLEXIVE
BANACH SPACES OF (N)-TYPE

Let (X, |- || )be a smooth normed linear space over [K(K = R, €).

2.1, DerINITION. The space (X, |- 1)) is called a smooth normed linear
space of (N)-type of the L-semi-inner-product which generates the norm
satisfy the relation

(N) I,y -+ 2l < [y il -+ (@, 2)0
for every o, y, z€ X.
Since (X, |[- [)) is a smooth normed linear space, we note that (,on(h-
tion (&) is equivalent with the condition
(J) Ky +2), )| = KJ), ad| + KJI(), aply @, 9,2€ X

where J is the duality mapping on AX.

2.2. REMARK. Every prehilbertian space is a smooth normed: linear
space of (N)-type

2.3. TaEorREM. Let (X, |- ) be @ smooth reflexive Banach space of
(N)-type. Then, for every E closed linear subspace in X, we have :

(1)  E™ is a closed linear subspace in X,

(i)  for every m € X, there exists o unique &' € B and o unique 2" € B*
such that © = o' + '

(iiiy X =8 ® E" (a topological sum).
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Proof. (i) Suppose that x, y e II". Then, for every e¢c I, we have

I(e, @ + y)l < [(e @)| + (& y)] =0, which implies that @ -+ y € E™

Since « € [K, © € ¥ = ax € K% one gels that F is a linear sub-
space in X,

»rLet us consider the mapping p.: X = R, p(x) = |(¢, )|, where

ee X and e # 0. It is easy to see that p. is a semi-norm on X, for every
ecX, e # 0.

Let o, — @ in X. Then
(e, zu)e] — (e, @)l | = [pel@i) — Pe(@)] < pol@n — ) =
=|(e, @, — )| < lle]| |ley — @], what implies |(e x,)| = |(e, @)L |-
If y, € E* and y, — y in X, then, for every ¢ I, we have

0 = (e, Yulul == Lim (e, ylz)L) = |(e, lim f/lz)L[ = 1(677)Ll;

=00 N—->co
which means that y € E".
_Consequently, E™ is a closed linear subspace in X.
(if). Let @€ X and let
= +a', vl vl
z=y +y',yel;y el
be two representations of .
One gets
Bog —y =o' —y' ek

7

Since B n E¥ = {0}, we obtain 2’ =yg’, 2" =y’

(iii). Tt is evident by (i) and (ii).

The theorem is proven.

Another property of smooth reflexive Banach spaces which satisties
condition (&) is included in the following theorem.

2.4, THEOREM. Let (X, |- 1)) be a smooth reflexive Banach space of
(N)-type and let (-,) be the L-semi-inner-product which generates the

norm || |- Then, for every f € X*, there exists @ unique element 1y € X such
that
(1) J(@) = (@, we, W= lwl, e
In addition, if f # 0, u, is given by
Jlw)
(2) Uy = W0,
[ |2

where w € Ker (f)¥ and w # 0.

Proof. Let fe X*.

If f =0 and if we suppose that 0 = f(x) = (z, v,); with ze X
and v, # 0, we obtain 0 = f(v;) = [lo/|[* which implies that v, = 0.
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If [ # 0, then by theorem 1.8.T, there exists an element w, # 0
such that relation (1) is valid. We have (w, ), = f(z) =0 for every
@ € Ker(f) which implies that wu, € Ker (NHE

1f v, € Ker (f)* is another element which satisties relation (1), since
Ker(f)¥ is a one-dimensional linear subspace in X, there exists a €K,
x # 1, such that v, == Au,.

One gets

(@, w,)y, = f(@) = (2, v, == N@, U)), #E€X

from where it results that » = 1.
The theorem is; proven.

9.5. CoROLLARY. Let (X, |- 1) be @ smooth reflexive Banach space of
(N)-type over the compler nwmber field. T'hen, for every fe X*, there ewists
o wnique element w, € X such that

(3) flw) = (@, wp)e — i(ir, wp)ey Wfll = Tl @€

92.6. COROLLARY. Let (X, |- ) be @ smooth reflewive Banach space of
(N)-type over the complen number field and let (+,)p be the L-semi-inner-
product which generates the norm |- ||. Then, for every f € X*, there exists o
unique clement u;, € X such that

o s TRe(uy g ), — loell o Re(ay, wr ite)y, e, |2
(4)  f(w) = lim e g

t-0 i t-g 1

Jor every x e X, and

(%) ISIF = Tfee Il

3. APPLICATIONS

In ref. [2] M. Golomb and RR. A. Tapia (sce also {17, p. 283) proved
the following theorem :

3.1, Tumowrmat. Let (X, |I-1) be a real Banach space with a URTLOCH!
duality mapping. Then J is a Wnear eperator if and only if (X, [|-]) is @
prehilbertian space. '

Further on, we shall give a characterization theorem for the Hilbert
space by use of lemma 1.2.1.

3.2. TurormM. Let (X, ||-|) be @ smooth Banach space. Then the
following sentences are equivalent :

@ (X, -1y 95 @ Hilbert space;
(ii) for every x, y € X, we have
Re(w, © + ty)r — [

lim i = Re(x, ¥)1,
t—0 t

where (+,+)y, 18 the L-semi-tnner-product which generales the norm.
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Proof. “(i) — (ii)”. It is evident.
(i) = (4)”. By lemma 1.2.T;, we have

Re(y, @)y, = lim So(® 2 + W)y — Jl=]?

{0 i

z,yelX

which implies that Re (y, 2);, = Re(a, YL

f (X, |-]) is a smooth Banach space over the real number field,
then the theorem is proven.

If (X, ) is a smooth Banach space over the complex number
field, we have

.

(¥ @) = Re(y, @), + 1Im(y, x), =Re(y, o), + i Re[—i(y, @)y ]=
= Re(y, @), — i Re(iy, z), = Re(y, z), — i Re(x, iy)y, =
= Re(x, y)r. — 1 Re[i(z, y).] = Re(e, y)r, + iRe[i(x, )] =
= Re(z, y)r. — i Tm(z, y);, = (z, ),

for every @, y € X, which implies that (*y+)c is a scalar product on X,
The theorem is proven.
The theorem of Lindenstrauss-Tzafriri [3] (see also [5], p. 198) is
well known :

3.3. THEOREM. Let (X, ||-||) be ¢ Banach space. If every E < X,
@ closed linear subspaces, is complemented in X, then (X, ||-) s isomorphic
to o Hilbert space. :

Finally, using the Lindenstrauss-Tzafriri theorem, we can prove the
following theorem :

3.4. THEOREM. Let (X, ||-])) be @ smooth reflexive Banach space of
(N)-type. Then (X, {-]) s 180morphic to a Hilbert spagce.
The proot results from theorem 2.3.T.
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