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1. Introduction. Consider the problem
(P) Minimize Re f(2) subject to z e M, g(z) €S,

where M is a nonempty set in C", § is a nonempty set in O™ and f: M — ¢
and ¢: 3 — O™ are functions.

Abrams [1] and Duea [6] gave saddlepoint optimality eriteria for
a nonlinear programming problem in a complex space. In the proofs of
the necessary optimality conditions, it is essential that problem (P) be
convex. In his proof, Abrams requested in addition that the funetions
J and g be analytic.

In this paper, we shall show that the convexity hypothesis can be
wealened. ' '

2. Notation and Preliminaries. Tet C* (R") denote the n-dimensio-
nal complex (real) veector space with Hermitian (Buclidean) norm |). ||,
R} ={zeR":a = (x,) with #, > 0 for all je{l, ..., n}} the non-nega-
tive orthant of R" and C™** the set. of m X n complex matrices. If A
Is & matrix or a vector, then A%, A4, A¥ denote its transpose, complex
conjugate and conjugate transpose, respectively. For z = (z,), we (" :
{z, w) = w"z denotes the inner product of z and w and Re 2 = (Re#) € R
denotes the real part of 2.

A set S in O™ is said to be a polyhedral cone if it is a finite inter- -
section of closed half-spaces in O™ each containing 0 in its boundary,
Lethere exists a natural number ¢ and g points w'. .., u?in O™ such that

S=n{H@w"):ke{l,.. wq}},

where H(u") = {ve 0™ : Re (v, u*) > 0}, % €{1,...,q}.
If 8 =n{H@W"):ke{l,...,q}} is a polyhedral cone in C” and
ve 0™, then we denote
S(v) = n{H(uw") : Re (v, u*) = 0).
The polar cone of a nonempty set § < O™, denoted by 8*, is the set
of all 4 in 0™ such that Re <% up > 0for each z €, ie.

S* ={uel":2e8 = Rezud > 0}
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Tet M be an open set in O". The function f: M - C™ is differentiable
at 20 e M it

f(2) — F&°) = [V f2) 1"z — 2% + [Vz (&) + (2 — 2% o(llz — 1)),

for all z € M, where V.f(°) and Vz f(2°) denote, respectively, the n X m
matrices whose k, j th elements are the partial derivatives

i) g A g

— and =1, ...,m;j=1,...,m,
075 {2y

and o(|lz — 2%))/ |l# — 2°]] = 0 as z — 2°.
DEFINITION 1. Let M Dbe a nonempty set in C* and let S be a

nonempty set in ¢™. The function f: M — O™ is said to be:
1) convex at ze M with respect to § if

veM,v # 2
te€]0,1°[ > (1 — )f(2) -+ tf(v) — L1~ + tv] e S5,
A —tz | tve M.

1) concave at z € M with respeet to S if f is convex at z € M with
respect to —S ={ueC": —uefl};

i13) convex (concave) on M with respect to S if M is convex and f
is convex (concave) at any z< M with respect to S. '

When referring to the objective funetion of a programming problem
in a complex space, the convexity of the real part is of interest.

DEFINITION 2. Let M be a nonempty set in C%and let T'be anonempty
set in R™ The function f: M — C™ is said to have convex real part/at
z € M(on M) with respect to 7' if f i3 convex at z(on M) with respect to
OT ={ueC”:Reuecli.

The following result may be found in Duea’s [7]:

TuroREM 1. Let M be a nonempty open set wn C", let z€ M, let S be
a closed convex cone in O™ and let f + M — O™ be u differentiable funciion at z.

If [ is convex at z with respect to S, then

fv) — f(&) — [V L&) (v — 2) — [V P —2) €8, for all z& M.
“We shall also need the following result :

THEOREM 2. Let M be a nonemply open set wn C", let 2° € M, let S be @
polyhedral cone in O™ with nonempty interior andletf : M — Cand g : M -0
be differentiable functions at 2% If 20 is o local optimal solution of problem (P),
then there exist r e B and u® € O™ such that :

(1) re R, ue(S(gle?))* < 8% (n,u0) # (0, 0),
(2) Re <g(2%), u%y = 0,
(3) P JE) b 1V E (%) — Ve g@ud — Vz glehu’ = 0.
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If, in addition, one of the following conditions holds,
. g satisfies the Arrow-Hurwics-Uzawa complex constraing qualifi-
cation (CCQ) at 2° with respect to X = {z € M : g(z) € M];
2° g satisfies the Kuhn-Tucker C0Q at ° with respect to X ;
3° g satisfies the reverse-concave CCQ at 2° with respect to X ;
4° g satisfies the weak CCQ at ° with respect to X ;

5° g satisfies Slater’s CCQ with respect to X, and g is concave ai 20 with
respect to S(g(2°)) ;

6 g satisfies the strict COQ with respect to X and g 18 concave af 2°
with respect to S(g(z°)) ;

7 M is convem, g is concave on M with respect to S and ¢ satisfies
Karlin’s COQ with respect to X, ' g J

then 7> 0.
The proof is given in ref. [5, Theorems 2 and 4].

3. Results. For r € R, let L, : M X O™ — ( denote the function defi-
ned by the formula:

Lin(zy w) = 7f(2) — {g(z), u) for all (z,u)e M x O™

TrrorREM 3. Let M be a nonempty open set in O let 25 M and let
S. be a polyhedral cone in C™ with nonempty interior. Let f: M — € be a
differentiable function at 2° having comves real part at 2° with respect to R,
and let g : M — O™ be a differentiable function at 2° concave at 2° with respect
to 8. If 2% is a local optimal solution of problem (P), then there exist re R
and u® e C™ sucl, that

(4) 7€ Ry, ute (S(g())* = 8% (r, wf) # (0, 0),
(3) Re {g(=%), u®) =0,
(6) Re L,(2% u) < Re L, (2% u°) < Re L,(», u%),

for all z € M and u e S*,
1, i addition, one of the following conditions hold,

17 g satispies the Arrow-Hurwics-Uzmwa complex constraini qualif'i—'
catton (CCQ) at 2° with respect to X = {ze M :g(z) e S};

2° g satisfies the Kuhn-Tucker CCQ atb 2° with respect o X ;
3° g satisfies the reverse-concave CCQ al 20 with respect to X ;
4° g satisfres the weal CCQ ab 2° with respect to X

5° g satisfies Slater’s CCQ with respect to X ;

6° g satisfies the strict CCQ with respect to X ;

1° M vs convew, g is concave on M with respect to S and g satisfies
Karlin’s 00Q with respect to X,
then r> 0.

Proof. In view of theorem 2, there exist » € B and u® e 0™ so that

(1) — (3) hold true. Since (4) is (1) and (5) is (2), inequalities (6) need to
be demonstated. '
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Since g(2°) € S, from (2) we have
Re I,(z% 1) = Re [1f(2?) — {g(z°), u>] < Re rf(2%) =
— Re [1f(2%) — {g(z%), u*)] = Re L(z°, u°),
for all w € §*. Henee, the first inequality of (6) holds.

On the other hand, the function j has convex real part at 2® with
respect to 2, and it is differentiable at #%; then by theorem 1, we have

Re [J(2) — /)] > Re [V (2 — 2°) + [Vl (& — &)}
for all ze M.

Since r € R, from the latter inequality and the properties of the
inner product, we deduce that

1) Rer[fz) — S > Re(rV (&) + rVaf(); 2 — &),

for all z e M.
The function g is differentiable at 2° and concave at #° with respect to
S ; then, by theorem 1, we have

(8) Redg(z) — g(%), W) < Re (Vog@Pu + Vzg(@)u’, z — 2%,

for all z e M, because u® e S*. '
Now, from (7), (8) and (3), we obtain

Re Ly(z, 1°) — Re L(22, u°) = Re {r [J(z) — f(°)] — <g(&) —9(z"), v } >

> Re(r VL@ + rVaf(e) — Ve gl — Vz g, z — &%) = 0,
for all z € M, i.e. the second inequality of (6) holds.

If, in addition, one of the conditions 19 — 7° holds, then 7> 0. This
completes the proot.

Eaxample. Consider the problem

(9) Minimize (z + 2 — 2)% (¢ + 2 — 6)
subject to :
(10) o 4+ 4+ 472 —15efuc C: —nf4 < argu < nf4}.

Let M =0, §={ue C:—n/t <argl < x/4} and let f(z) =
=(2+2—2)3(+2—6) and g(z) = —22 + 42 + 42 — 15 for all
# € M. Then problem (9) — (10) is of the form (P). Let z° = 3. Evidently,
the funections f and ¢ are differentiable at 2, the function f has convex real
part at 2° with respect to ., the function g is concave at 2° with respect
to & and S is a polyhedral cone in ¢ with nonempty interior. It can be easily
veritied that 2° is a local optimal solution of problem (9) — (10). Hence,
the hypotheses of theorem 3 are satisfied. Then there exist » € R and u® eC
such that (4) — (6) hold. It can be easily shown that » = 1 and «° = 64.

We remark that for problem (9) — (10), theorem 2 from ref. [1]
and theorems 1 and 2 from ref. [6] cannot be applied, because f tails to
have convex real part on M with respect to R, (the definition is not ful-
filled for 2 =1, v =2 and = 1/2).
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