MATHEMATICA -- REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 16, N° 1, 1987, pp. 29-33

SADDLEPOINT NECESSARY CRITERIA FOR NONLINEAR PROGRAMMING IN COMPLEX SPACE

DOREL I. DUCA (Cluj-Napoca)

1. Introduction. Consider the problem

(P) Minimize Re f(z) subject to $z \in M$, $g(z) \in S$,

where M is a nonempty set in C^n , S is a nonempty set in C^m and $f: M \to C$

and $g: M \to C^m$ are functions.

Abrams [1] and Duca [6] gave saddlepoint optimality criteria for a nonlinear programming problem in a complex space. In the proofs of the necessary optimality conditions, it is essential that problem (P) be convex. In his proof, Abrams requested in addition that the functions f and g be analytic.

In this paper, we shall show that the convexity hypothesis can be

weakened.

2. Notation and Preliminaries. Let C^n (R^n) denote the n-dimensional complex (real) vector space with Hermitian (Euclidean) norm $\|.\|$, $R_+^n = \{x \in R^n : x = (x_j) \text{ with } x_j \geq 0 \text{ for all } j \in \{1, \ldots, n\} \}$ the non-negative orthant of R^n , and $C^{m \times n}$ the set of $m \times n$ complex matrices. If A is a matrix or a vector, then A^T , \bar{A} , A^H denote its transpose, complex conjugate and conjugate transpose, respectively. For $z = (z_j)$, $w \in C^n$: $\langle z, w \rangle = w^H z$ denotes the inner product of z and w and $\text{Re } z = (\text{Re } z_j) \in R^n$ denotes the real part of z.

A set S in C^m is said to be a polyhedral cone if it is a finite intersection of closed half-spaces in C^m , each containing 0 in its boundary, i.e.there exists a natural number q and q points $u^1 \ldots u^q$ in C^m such that

$$S = \cap \{H(u^k) : k \in \{1, \ldots, q\}\},\$$

where $H(u^k)=\{v\in C^m: \operatorname{Re}\langle v,\ u^k\rangle\geqslant 0\},\ k\in\{1,\ \ldots,\ q\}.$ If $S=\cap\{H(u^k): k\in\{1,\ \ldots,\ q\}\}$ is a polyhedral cone in C^m and $v\in C^m$, then we denote

$$S(v) = \bigcap \{H(u^k) : \operatorname{Re} \langle v, u^k \rangle = 0\}.$$

The polar cone of a nonempty set $S \subseteq C^m$, denoted by S^* , is the set of all u in C^m such that $\text{Re } \langle z, u \rangle \geqslant 0$ for each $z \in S$, i.e.

$$S^* = \{ u \in C^m : z \in S \Rightarrow \operatorname{Re} \langle z, u \rangle \geqslant 0 \}.$$

Let M be an open set in C^n . The function $f: M \to C^m$ is differentiable at $z^0 \in M$ if

PART PART REPORTED BY A PROPERTY AND THE

$$f(z) - f(z^{0}) = [\nabla_{z} f(z^{0})]^{T} (z - z^{0}) + [\nabla_{\bar{z}} f(z^{0})]^{T} + (\bar{z} - \bar{z}^{0}) o(||z - z^{0}||),$$

for all $z \in M$, where $\nabla_z f(z^0)$ and $\nabla_{\overline{z}} f(z^0)$ denote, respectively, the $n \times m$ matrices whose k, i th elements are the partial derivatives

$$rac{\partial f_k(z^{m{0}})}{\partial z_j} \; ext{ and } \; rac{\partial f_k(z^{m{0}})}{\partial ar{z}_j}, \; k=1,\,\ldots,\,m\,; \; j=1,\,\ldots,\,n,$$

and $o(||z-z^0||)/||z-z^0|| \to 0$ as $z \to z^0$.

30

DEFINITION 1. Let M be a nonempty set in C^n and let S be a nonempty set in C^m . The function $f: M \to C^m$ is said to be:

i) convex at $z \in M$ with respect to S if

$$\begin{array}{l} v \in M, \ v \neq z \\ t \in] \ 0,1 \ [\\ (1-t)z + tv \in M. \end{array} \right\} \underbrace{\qquad } (1-t)f(z) + tf(v) - f[(1-t)z + tv] \in S \ ;$$

ii) concave at $z \in M$ with respect to S if f is convex at $z \in M$ with respect to $-S = \{u \in C^m : -u \in S\}$;

iii) convex (concave) on M with respect to S if M is convex and f is convex (concave) at any $z \in M$ with respect to S.

When referring to the objective function of a programming problem in a complex space, the convexity of the real part is of interest.

DEFINITION 2. Let M be a nonempty set in C^n and let T be a nonempty set in \mathbb{R}^m . The function $f: M \to \mathbb{C}^m$ is said to have convex real part at $z \in M(\text{on } M)$ with respect to T if f is convex at z(on M) with respect to $CT = \{u \in C^m : \operatorname{Re} u \in T\}.$ tive cortisant of My and research to earlier avit

The following result may be found in Duca's [7]:

THEOREM 1. Let M be a nonempty open set in C^n , let $z \in M$, let S be a closed convex cone in C^m and let $f: M \to C^m$ be a differentiable function at z.

If f is convex at z with respect to S, then

$$f(v) - f(z) - [\nabla_z f(z)]^{\mathrm{T}}(v-z) - [\nabla_{\overline{z}} f(z)]^{\mathrm{T}}(\overline{v} - \overline{z}) \in S, \text{ for all } z \in M.$$

We shall also need the following result:

THEOREM 2. Let M be a nonempty open set in C^n , let $z^0 \in M$, let S be a polyhedral cone in C^m with nonempty interior and let $f: M \to C$ and $g: M \to C^m$ be differentiable functions at zo. If zo is a local optimal solution of problem (P), then there exist $r \in R$ and $u^0 \in C^m$ such that

(1)
$$r \in R_+, \ u^0 \in (S(g(z^0)))^* \subseteq S^*, \ (r, u^0) \neq (0, \ 0),$$

(2) $\operatorname{Re} \langle g(z^0), u^0 \rangle = 0,$

(2)
$$\operatorname{Re}\langle g(z^0), u^0 \rangle = 0,$$

$$(3) r \overline{\nabla_z f(z^0)} + r \nabla_{\overline{z}} f(z^0) - \overline{\nabla_z g(z^0)} u^0 - \nabla_{\overline{z}} g(z^0) \overline{u}^0 = 0.$$

If, in addition, one of the following conditions holds,

1° g satisfies the Arrow-Hurwicz-Uzawa complex constraint qualification (CCQ) at z^0 with respect to $X = \{z \in M : g(z) \in M\}$;

2° g satisfies the Kuhn-Tucker CCQ at z⁰ with respect to X;

3° g satisfies the reverse-concave CCQ at z⁰ with respect to X;

 4° g satisfies the weak CCQ at z^{0} with respect to X;

5° g satisfies Slater's CCQ with respect to X, and g is concave at zo with respect to $S(g(z^{\circ}))$;

6° g satisfies the strict CCQ with respect to X and g is concave at z⁰ with respect to $S(g(z^{\circ}))$;

7° M is convex, g is concave on M with respect to S and g satisfies Karlin's CCQ with respect to X, then r>0.

The *proof* is given in ref. [5, Theorems 2 and 4].

3. Results. For $r \in R$, let $L_r: M \times C^m \to C$ denote the function definedby the formula:

$$L_r(z,\,u)=rf(z)-\langle g(z),\,u
angle \ \ ext{for all} \ \ (z,\,u)\in M imes C^m.$$

Theorem 3. Let M be a nonempty open set in C^n , let $z^0 \in M$ and let S be a polyhedral cone in C^m with nonempty interior. Let $f: M \to C$ be a differentiable function at z⁰ having convex real part at z⁰ with respect to R. and let $g: M \to C^m$ be a differentiable function at z^0 concave at z^0 with respect to S. If z^0 is a local optimal solution of problem (P), then there exist $r \in R$ and $u^0 \in C^m$ such that

(4)
$$r \in R_+, \ u^0 \in (S(g(z^0)))^* \subseteq S^*, \ (r, \ u^0) \neq (0, 0),$$

(5) Re
$$\langle g(z^0), u^0 \rangle = 0$$
,

(6)
$$\operatorname{Re} L_r(z^0, u) \leq \operatorname{Re} L_r(z^0, u^0) \leq \operatorname{Re} L_r(z, u^0),$$

for all $z \in M$ and $u \in S^*$.

If, in addition, one of the following conditions hold,

1° g satisfies the Arrow-Hurwicz-Uzawa complex constraint qualification ($\check{C}CQ$) at z^0 with respect to $X = \{z \in M : g(z) \in S\}$;

 2° g satisfies the Kuhn-Tucker CCQ at z° with respect to X;

 3° g satisfies the reverse-concave CCQ at z^{0} with respect to X;

 4° g satisfies the weak CCQ at z^{0} with respect to X;

5° g satisfies Slater's CCQ with respect to X;

 6° g satisfies the strict CCQ with respect to X;

7° M is convex, g is concave on M with respect to S and g satisfies Karlin's CCQ with respect to X, then r>0.

Proof. In view of theorem 2, there exist $r \in R$ and $u^0 \in C^m$ so that (1) – (3) hold true. Since (4) is (1) and (5) is (2), inequalities (6) need to be demonstated.

33

Since $g(z^0) \in S$, from (2) we have the declaration of the state of

$$egin{aligned} & ext{Re} \ L_r(z^0, \, u) = ext{Re} \ [rf(z^0) - \langle g(z^0), \, u
angle] \leqslant ext{Re} \ rf(z^0) = \ & = ext{Re} \ [rf(z^0) - \langle g(z^0), \, u^0
angle] = ext{Re} \ L_r(z^0, \, u^0), \end{aligned}$$

for all $u \in S^*$. Hence, the first inequality of (6) holds.

On the other hand, the function f has convex real part at zo with respect to R_+ and it is differentiable at z^{0} ; then by theorem 1, we have

$$\operatorname{Re}\ [f(z)-f(z^0)] \,\geqslant\, \operatorname{Re}\, \{\,[\,\bigtriangledown_z f(z^0)\,]^{\mathrm{\scriptscriptstyle T}}\,(z\,-\,z^0)\,+\,[\,\bigtriangledown_{\,\bar{z}}\,f(z^0)\,]^{\mathrm{\scriptscriptstyle T}}\,(\bar{z}\,-\,\bar{z}^0)\}$$

for all $z \in M$.

Since $r \in R_+$, from the latter inequality and the properties of the inner product, we deduce that

(7) Re
$$r[f(z) - f(z^0)] \ge \operatorname{Re} \langle r \overline{\nabla_z f(z^0)} + r \overline{\nabla_{\bar{z}}} f(z^0), z - z^0 \rangle$$
,

for all $z \in M$.

The function g is differentiable at z^0 and concave at z^0 with respect to S; then, by theorem 1, we have

(8)
$$\operatorname{Re}\langle g(z) - g(z^0), u^0 \rangle \leqslant \operatorname{Re} \langle \overline{\nabla_z g(z^0)} u^0 + \nabla_{\overline{z}} g(z^0) \overline{u}^0, z - z^0 \rangle,$$

for all $z \in M$, because $u^0 \in S^*$.

Now, from (7), (8) and (3), we obtain

$$\begin{split} &\operatorname{Re}\,L_r(z,u^0) - \operatorname{Re}\,L_r(z^0,u^0) = \operatorname{Re}\,\{r\,\left[f(z) - f(z^0)\right] - \langle g(z) - g(z^0),u^0\rangle\} \geqslant \\ &\geqslant \operatorname{Re}\langle r\overline{\bigtriangledown_z f(z^0)} + r\bigtriangledown_{\overline{z}}f(z^0) - \overline{\bigtriangledown_z}\,g(z^0)u^0 - \bigtriangledown_{\overline{z}}\,g(z^0)\overline{u}^0,z - z^0\rangle = 0, \end{split}$$

for all $z \in M$, i.e. the second inequality of (6) holds.

If, in addition, one of the conditions $1^{\circ} - 7^{\circ}$ holds, then r > 0. This completes the proof.

Example. Consider the problem

(9) Minimize
$$(z + \bar{z} - 2)^{\frac{3}{2}} (z + \bar{z} - 6)$$

subject to " - All more and the second subject to " - All

$$(10) -z\bar{z} + 4z + 4\bar{z} - 15 \in \{u \in C : -\pi/4 \le \arg u \le \pi/4\}.$$

Let M = C, $S = \{u \in C: -\pi/4 \le \arg u \le \pi/4\}$ and let $f(z) = (z + \bar{z} - 2)^3 (z + \bar{z} - 6)$ and $g(z) = -z\bar{z} + 4z + 4\bar{z} - 15$ for all $z \in M$. Then problem (9) — (10) is of the form (P). Let $z^0 = 3$. Evidently, the functions f and g are differentiable at z^0 , the function f has convex real part at z^0 with respect to R_+ , the function g is concave at z^0 with respect to S and S is a polyhedral cone in C with nonempty interior. It can be easily verified that z^0 is a local optimal solution of problem (9) — (10). Hence, the hypotheses of theorem 3 are satisfied. Then there exist $r \in R$ and $u^0 \in C$ such that (4) – (6) hold. It can be easily shown that r=1 and $u^0=64$.

We remark that for problem (9) - (10), theorem 2 from ref. [1] and theorems 1 and 2 from ref. [6] cannot be applied, because f fails to have convex real part on M with respect to R+ (the definition is not ful-

filled for z = 1, v = 2 and t = 1/2.

REFERENCES

[1] Abrams, R. A., Nonlinear Programming in Complex Space: Sufficient Conditions and Duality, J. Math. Anal. Appl., 38 (1972), no. 3, 619-632.

Abrams, R. A. and Ben-Israel, A., Nonlinear Programming in Complex Space:

Necessary Conditions, SIAM J. Control, 9 (1971), no. 4, 606-620.

Craven, B. D. and Mond., B., Real and Complex Fritz John Theorems, J. Math. Anal. Appl., 44 (1973), 773-778.

Duca, D. I., Constraint Qualifications in Nonlinear Programming in Complex Space, Studia Univ. Babes-Bolyai, Math., 23 (1978), no. 1, 61-65.

Duca, D. I., Necessary Optimality Criteria in Nonlinear Programming in Complex Space with Differentiability, L'Analyse numérique et la théorie de l'approximation, 9 (1980),

[6] Duca, D. I., Saddlepoint Optimality Criteria of Nonlinear Programming in Complex Space without differentiability, Studia Univ. Babes-Bolyai, Math., 25 (1980), no. 4, 39-46.

Duca, D. I., Mathematical Programming in Complex Space, Doctoral thesis, University of Cluj-Napoca, Cluj, Napoca, 1981.

Received 1.II.1987

man () and to but (1).

University of Cluj-Napoca Faculty of Mathematics Str. Kogălniceanu, No. 1 3400 Cluj- Napoca Romania