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The theory of extended geomefrie programming is based on the ab-
stract geometric inequalities introduced by R. J. Duffin, E. L. Peterson
and C. Zener in ref. [4], |

DErFINITION 1. An inequality is said to be an abstract gecometric ine-
quality if it satisfies the following postulates :

(¢) The inequality is a scalar product inequality of the form

(1) Y @y < Ny) G(o) — Hy),
7=1

which is valid for each vector @ = (2, ..., ,) in an open convex set
C < E" and each vector y = (y,, ..., y,) in a cone K < B", where F, i :
K — R and G :C — R are functions. :

(1) For any vector « € €, there is a nonzero vector z € K such that
inequality (1) becomes an equality for each vector y on the ray emanating
from the origin through the point 2, i.e. i

n

Y 2wy = Ny) G(o) — F(y), for all y = oz, a > 0.

=1

(192) The function A is nonnegative on the set K.
(vv) The function @ is differentiable on the open convex set C.

The abstract geometric inequalities have some useful properties sta-
ted in the following lemmas [4].

Lumma 1.0 If an abstract geometric inequality is actually an equality
for a vector  in C and a vector y in K, then
oG

yi = A1) e (@), for any ve{1, ..., n}.
T

Lemma 2. If @ 4s a vector in C and o is an arbitrary won-negative
number, then the vector

Y = aV&(x)



96 LEUGENIA DUCA 2

ts wn I and the abstract geometric tnequality (1) becomes an equality for x
and y. Moreover, y 4 0 when « # 0.

LEMMA 3. For each abstract geometric wnequality and for each non-ne-
gatwe number o, the following identities are valid : '

(2) _ MaVQ(2)) = a, for all zeC
and
(3) F(aVG(2) = all(VA(2), for all xeC.

LeMma 4. The function G appearing in an abstract geometric 1Requa-
lity is a convex function. _

Dutfin, Peterson and Zener [4] showed that the inequality relating
the arithmetic and geometric means, the imequality relating the arithmetic
and harmonic means, Holder’s inequality and several other inequalities
are special cases of abstract geometric inequalities. Through these inequa-
lities, generalizations of geometric programming are obtained,

In [2], Dueca established an inequality given by the following lemma.

- - ; #
LeEvMaA 5. Let wy = 0, ..., u, = 0 and =10, Wil =10, ¥ v #0.
i=1

Then
" " " :]/i Z :'I.’I
o4 . CU,; /
(4) Y > In (Z y;) II ( ) i=1
i=1 1=1 i=1 :I/[

the equality being valid if and only if

A = :1/[/( Y -7/,') » for all ie{1, ..., n).

f=1

The proof iy given in rel. [2].

Here and for what follows, we define ¢n ¢t = 0 if ¢ — 0,

In [2], we have developed a duality theory of geometric programming
based on inequality (4).

In this paper, we shall show hat inequality (4) can be written as a
scalar product inequality of the form (1) and we shall prove that the ine-
quality obtained is not an abstract geometric inequality. This proves that
the duality theory developed in ref. [2] is not an individual case of the
duality theory developed in ref. [4]. Rt

TrworeM 1. (1) Let @ = (@, ..., @) in B* and let

Y=Y + -y Yu) = 0 with Yy # 0. Then

=1

()) )“J mz—.?-/: < (Z‘ ?/«-) (

t=1 =1

e““) + Y vilny — (Z .7/,-) In ( Y, yi) -~ Yo
=1 ] =1

i=1 i=1 i=1

1
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the equality being valid if and only if

f
e"”l(z yi) =y for all je{l, ..., n}.
=1
(1%) Imequality (3) is not an abstract geometric inequality.
Proof. (t) Part (1) of the theorem is obtained applying lemma 5 to the
system of numbers :

W
Uy = 6% Lo Uy =¢€"59, 20, ...,y,20 with ¥ y; # 0.

=1

(17) Inequality (5) can be expressed as a scalar product inequality
of the form (1), if in definition 1 we take ¢ = E" the cone K = R% as
the non-negative orthant of B* and the functions #, » : I - Ry G:0 > R
defined by v : .

" " "

F(y) =(Z yi) IH(Z yf) =Y yny ¥y, yek,
=1 =1 : 1 i

t=1 = g=1

BEvidently, in this case, the postulates (), (i77) and (iv) of definition 1
are fultilled. We shall show that the postulate (7i) of definition 1 is not
Tulfilled. We shall show this by contradiction Assume that postulate (44)
is fulfilled. Let ‘

"
& = (T ..., %,) € C with Y, ¢'# 1. Then, by postulate (i7), for the above
=1

®, there exists a nonzero vector e K so thatl

Y zy. = My) G(w) — F(y) for all y = a2, « > 0.

i1
By statement (i) of theorem 1, the equality in (3) holds if and oulj it

n
¢y, ar; = az; for all je{l, ..., n}.

i==1

Assume that « is strictly positive. Then the inequality in (5) is valid if
and only if

i=1

1y 2 =2z tor all je{l, ..., n},

i.e., if and only it the coordonates of the vector # = (2, ..., #,) are a solu-
tion to the linear and homogeneous system
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(@-‘”1 a 1) 2y + en oA+ €z, = 0

(6) % 2y - (e — Dzg + ... + €2, =0

ez e 2y 4 (6" — 1) 2, = 0,

The determinant of system (6) is

€ —1 e P Y- LTSN~ 2
I R L
D = . . = E
6"’”—1 Gx”—l . . 67;?1—1 — 1 63;“_1
63:1; 6-7?,; Jrgonng 63” 6.1“ i 1
=100, 4.0 e =16 70 0 gl 0T e
0 —10. . .0 ¢~ 0 —10....0¢n
| g e bl a ) (g e
B 00 1 gt ; en
1 11, ., .1 ¢n—1 0 00 ¢ 03 sl
i=1

= (—1)”-1( "V; e" —1).

=1

Since ¥} ¢ # 1, we have D # 0; thus, system (6) admits only the trivial
t=1 .
sqlution Z =2 = ... =g, = 0. Then the vector 2 = 0, which contra-
dicts the hypothesis that ¢ 0. Thus, axiom (12) of definition 1 is not
verified, so that inequality (5) is not an abstract geometric inequality and

the theorem is proven.

The properties of the abstract geometric inequalities expressed by
lemmas 1 and 4 are valid for inequality (5) too. To the properties of the
abstract geometric inequalities expressed by lemmas 2 and 3 correspond
the properties of inequality (5) given by the following lemmas.

LEMMA 6. If x is an arbitrary vector in C and « is an arbitrary
non-negatrve number, then the vestor y = o G(x) is in K. Moreover, ¥y # 0
when o # 0.

1If the vector x in C has the property that ¥, ¢* = 1, then inequality (5)

i=1

becomes an equality for z and y = oV @().

LEMMA 7. For any non-negative number «, the functions B, and
G verify the following identities :

(7) © NaVa(w) = al(z), for all e 0,
and
(8) F(aVG(2)) = «B(V@(2)), for all weC.

14
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The proof of the lemmas is easily obtained from theorem 1 and the
definition of the functions F, », and G.
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