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COMPUTATIONAL ASPECTS OF SOME ITERATIVE
METHODS FOR BOUNDING THE INVERSE
' OF A MATRIX
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(Oldenburg)

Abstraet: We consider iterative methods for improving bounds for the inverse of a
matrix. A modification of the well-known higher-order interval Schulz methods is proposed.
Its computational efficiency is as for the original methods but it is preferable with regard to
the accumulated rounding errors. Furthermore, for practical applications, a sufficient criterion
for the monotonicity of the methods is given and thus taking intersections after each step
can be avoided.

Let 4 be an (n, n) real nonsingular matrix and let X be an (n, n)
interval matrix with

A7le XO,

In ref. [37], Chapter 18, we can find iterative methods for improving
X©® by means of the 1nte1vml arithmetics. These methods can be consi-
dered as interval versions of the higher-order Schulz methods and are
defined as follows :

(1) X FD = X®) 2 T — Am(X®)) + XB(T — Am(X®))-1,

(2) X6+ — { (A) i I—4dm X(’)) i xe(T —Am(Xl“‘)))"l} nx®,

where I -denotes the unit—matrix and
| m(X)= m((Xsy)) = ((ahi+ a)/2)

is the midpoint matrix of an interval matrix X. The integer parameter ¢
is to be greater than 1. It can be shown that ,

A1eX® I >0
holds true for (1) and (2). Obviously, for (2) we have the property

(3) X0 2 X0 5 X ..,
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which means, that the iterates of (2) are forming -a nested sequence of
interval matrices. As to the convergence of the methods to A-! it can
be shown (compare Theorem 1 and 2 in ref. [3], Chapter 18) that for
method (1) .

ol ~ Am(X0) <1 < lim X® — 4-1

k—}w
is valid whereas, for method (2), the stronger condition
o(l1 —4X|) <1 for XeX© = lim X® = A1

koo

holds. The E-order of convergence is measured as usual by the R-order
of the sequence {|[d(X®)]|}, where

d(X) = d((Xy)) = (aF — aly)

is the width-matrix of an interval magrix and [.Il denotes an arbitrary
matrix norm. In the above-mentioned Theorems, it is shown that for
method (1) as well as for method (2)

047, (X®}) > ¢

can be estimated.

For practical computations, it seems reasonable to start the iteration.—
once 7 has been chosen — with method (1) because the convergence cri-
terion is considerably weaker than that of (2). After some iterations when
the condition for the convergence of (2) to 47 is fullfilled, then (2) should
be applied because of its monotonicity which leads to a quite natural
stopping rule. With regard to the parameter 7, it can be shown that r — 3
is an optimal choice with respect to the computational etficiency (see
ref. [10], Appendix (') when evaluating the formulas in (1) and (2) accor-
ding to the Horner-scheme. This optimality is, however, not true if we
take into account the accumulated rounding errors. To minimize these,
the choice r == 2 should be taken.

Before dealing with the problem of an optimal method we consider
first the aspect of a combined method of (1) and (2). We shall show
that the proposed switching from (1) to (2) can be avoided in many
cases. This could save a remarkable amount of operations in each step
of (1) necessary for the test of the convergence condition for (2) to. 471,

Numerical examples showed that for almost every choice of X
in the procedures of [3], Appendix C, the iteration according to (1) has
already monotonic behaviour. On the other hand, from the necessary
condition for the monotonicity of (1)

it follows that in the case of monotonicity, d(X®) must be sufficiently
large (see [6]). The question remains how large d(X‘®) should be chosen
so that (1) may be already monotonic. Remember that d(X®) has no
influence on the convergence criterion for (1), which is only a condition
on the quality of m(X?) as an approximation of A-1.' An important step
in this direction was made by Schmidt in ref. [9], where it is shown thaf
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(4) is also a sutficient condition for the monotonicity of (1). Now we can
conclude in the following way. (4) is equivalent with

[(X D) — m(XO)| < % (A(X©@) — d(xan),
Yor the sequence {m(X®)}, after a simple rearrangement of terms, we
aed
(I — Am(XD)) = (I — Am(XO).
This leads to the equation
m(X®) = AT — (I — Am(X®)))

and once this is substituted into the above inequality, we have

IA—l([ N ([ il Ao?a(X“”))") Ve m(X(O))I < % (d(X(O)) = d(X(D)).

Sinee
A(XW) = d(XO)|(T — Am(X©)) |
is wvalid, we finally get

(5) 1A = —Am( X)) —m(XO) | < S AXO) I — (T —Am(XO) )
a8 a necessary and sufficient condition for the monotonicity of (1). This
inequality enables us to proof the following

LeMMA. Tet A1 e X© and let [[I — Am(XN| <1 (|]. || denotes
the column-sum norm); then (1) converges to A=t and if d(X9) is chosen
according o the rule

4J

(1 + I — Am(X®)[") - max [by] + max [m(XD)]
h t’]

AXP) =h> 2.
1— | — Am(XO)|~1
where B = A~ then (1) is monotonic. ;

Proof : The proof can be done by simply substituting: d(XD).= 7
infto the right-hand side of (5) and then, estimating the result as below
which gives the left-hand side expression of (5).

Remarks : In the above formula for & one can simplify the expres-
sion by realizing that

1T — Am(XO)F < T — Am(X©@)]

holds true. For the case when » = 2, it is possible to get some sharper
bounds for & (see [5]) and it can be shown that in this case the automa-
tically generated matrices X9 in the procedures given in ref. [2] and
[3] always produce monotonic sequences of iterates. \

Now, we consider the second problem of constructing an optimal
method with respect to the computational efficiency and to the accumulated
rounding errors. 'As ‘was stated earlier, the optimal choices are » = 3
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and 7 — 2, respectively. The proposed methods herein try to combine
both choices by defining higher-order methods which use only formulas
comparable with the case when # = 2. Our methods are the following
ones :
?/,(k+1,0) — ,,n(X(k)) I :‘((D(I el Am(x(lr))),
(6)  y*HD — m(X®) g T — Am)(XP), 1 < 0, ¢ < 5,
XOHD — (XD o yFrL(T — Am(X®)), (s fixed)
yEHL0 = LX) KT — Am(X®))} n X
(7)o — (m(XP) 4 gD — Am(XO)} 0 y#+ D1 <46 < s
U — L XD oo gL T L Am(X®))} n yFH9(s fixed)

Again, (7) is the monotonic version of (6). As for the interval Schulz
methods, one uses the equality

4—1 = J.Y - 1_1"1(1 = ".LY)

together with the inelusion property in the interval arithmetics to prove
by complete induction the properties

Al eqg®D 1< s 8, A7 e XD L 2 0

for methods (6) and (7).

On closer inspection, the interval matrices y® o and, X® in (6)
turn out to be just the intermediate results of the Horner-scheme compu-
tation. of (1). However, this is not true for (7). So, we can conclude that
the sequence {X™®} and — as a simple consequence — the sequences
{y®9 converge to AL itf (I — Am(X©)) < 1. Also, by direct proof
it can eagily be shown that

o(|I — AX|) <1for X e XO

guarantees the convergence of the sequences {y*P} and {X™} of (7) to
AL If we apply the width operator d to the equations in (6) and (7) and
then ‘estimate the right-hand sides as above like for the interval Schulz
methods, we get the following system of inequalities :

d(yr10y < J) AT A (X ®)

d(,/(k+1),i)) < k;ﬂ d(y(k+1,i—1)) IAfild(X(k)), 1< ’b,?: < s,

1

d(_X(k-l—l)) < T d(y(k+1,s)) IA ld(;‘f(h‘)).

Now, we apply a monotonic and multiplicative matrix norm to these
inequalitics and because of the equivalence of all matrix norms, we get
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the following system of recurrences for an arbitrary norm :
a0 < a@ ),

[dy* ) < a@lf dlp*H )L AXD), 1 <A, ¢ < s,

”d(X(lr»H)) H < a(.v+1) ” d(y(kﬂ,s)) || . ” d(X(k)) ”

Such a system was treated in ref. [4] and it was proved that we have
Ou(A7, {XM}) > 543, 0447, {3*9}) > 5 +3,0 <4 < s

This means that all the intermediate results of the Horner-scheme g9

behave like X%, 7
'If we measure the computational efforts in terms of the necessary

matrix multiplications in (6) or (7), then we get for the computational

efficiency the lower bounds ¢

1
(s + 3)CT7

which have its maximum /3 at s = 0. The optimal choices with respect
to these lower hounds arce both methods of order of at least 3 :

Y = (X ) + X — Am(XW),

X(l;+1) . ,m(lY(i:)) _Jr y(h-+1)(l o Am(x(t;)))’
yhrY = {m(X®) o XO(L — Am(XF)} n X,

X(I:+1) = {m()((h')) ,+ ?/(“1)(,1 ‘i Am(X"”))} n y(lti-l);

These methods can be considered as the interval versions of a method
proposed in [1]. The accumulated rounding errors are almost the same as
for the cage » =2 in (1) or (2) because of the similar structure of the
corresponding iteration formulas. )

For practical purposes, one can again combine (6’) and (7') in the
same way as (1) and (2). Furthermore, for the monotonicity of (6’), the
gsame is true as for (1) with » = 3. ’

We conclude with a nuinerical example which gives a comparison
between a combination of (1) with (2), resp. of (6') with (7). For sim-
plicity, we choose n = 3. '

"1 =011 0.1
A=(~-~O.1 1 0.1)
ov1 reorz TRyl
©[L, 1.2]  [0.1, 0.2] [—0.2, 0.1]
X ——( [0.1, 0.2] [1, 1.2] [—0.2, 0.1])
[—0.2, 0.1] [—0.2, 0.1] [1, 1.2]
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X is the numerical fixed point of iteration (1) combined with (2). ¥ is
the numerical fixed point of iteration (6') combined with (7). After a few
iterations, in both cases we get the results:

(1]

21

191

['10]

10 1 1

dy) = 1 10 1]-10712
T4, olat 10
20 2 2

Ax)y=| 22 2} 10
2 2720

The computations were performed on a microcomputer Apple //e with a
PASCAL SC! system (sce [8]). This example can be found in'rvef.. [7]
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