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We consider an autonomous system ' in the case when it has one or
more than one singular point. Such systems have been very widely stu-
died and arise frequently in applications. References [2], [4] — [8] give
the conditions for a Liénard system to admit L limit cycles surroun-
ding an odd number of singular points. In this paper, we generalize further
down the system studied in refs. [4] — [8] and give existence condi-
tions for k limit ¢ycles surrounding 2n + 1 singular points.

Consider the system

z'= h(xyy — F(x)
i L

(_5)_ A —9(®) + «(@)y,

where I'(z) = S Jlxy de, g(x), fa), M(z), a(z), are continuous functions
which satisty a?l the conditions ensuring the solution uniqueness for any
Cauchy problem. We consider the conditions for g{x)

glo) =0, = =1,0,1, ...,20 — 15 &y < ey < .o < Hga_qy
(2)  g(x) >0, Vor € (a9l g i), i=1,nandVze (otga_yy ©0)

g < 0, VEE (ol amily)y © =1, my and Vo € (—0o, x_y).

TurorEM 1. Let the function ¢(x)satisfy conditions (2). T'here eaist

the functions o), 4= 1,k k > 2 o) —— oiw) ()] # 0, the systems
‘ Qi) y 1Yy ] @ f ’ Y

of ) numbers . To < By ive ofS o Toy <Ky Bp > Tpy > 4n . >0 >
> dgpdyy and the functions -

Fw) = F(a') — h(w) 9:(x), Ola) = ,!ﬂ(@' (’:’i(m) = i e (®)
~— @i@) W)
g(@)

— . - We “impose the following supplementary conditions :
o(z) — ol(a)i(a)

(1) 90) =0, [o(w) = ¢ix) Wa)]- (1) <0, i ==1, k,
wE [y T,
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(i) Fy(w,) (=)™ <O(2)( 1) < Fy(w) (—1)"Y
vew_ya:], 1 =1,k
Ma)Pw) (=1)F < Fi(a) (1), (1) Fya,) <
< Ma_y) D) —1)Y*rw e [z, 2]
(i) Fu(a)(= 1)1 B (@)= 1), Ffa_y) (1) >
> Py (15 =1, k.

Then, system (1) has k —- 1 limit cycles surrounding 2n + 1 singular points.
In cvery domoin »_; << @ << a;, © =1, k, there are at most i — 1 Hmilt
eycles, oul of which [i)2] are stable and [(1 — 1)/2] are unstable.

Proof. Let bk = 2. We substitute in (1)
(3) Y =Y + i)
Then” system (1) Dbecomes
{50 = @)y — Fy(x)
¥ = Holz) — i) M(x) (y — D).

We build a veetangle 1"y having the legs parallel to the coordinate axes,
and the vertices By(ay, Fy(a1)), B_,(x_y, Fi(2_))). Also, the trajectories of
system (4), which cross the rectangle legs for increasing ¢ penetrate inside
the rectangle. Then, we substitute in (4) -

(+)

(%) Y=y + o) — oy(a)

and obtain the system

& = h(w)y — D)
(6)

= (@) — oya) h(@)) (§ — Byla)).

Let I'; be the closed curve into which the border of the rectangle
I'; passes through the transformation (5). The trajectories of system (6)
crossing the curve I') penetrate inside it. Then we build the rectangle I',
having the legs parallel to the coordinate ‘axes, and the vertices By(w,,
T}y B_glx_ gy " Fy(a_p))u The trajectories of system (6) crossing the leg%
of I'; go out of Lhe 100Mn010 Then, in the ring domain bounded by Iy
and I, there exists at least one unstable limit cyele; therefore, the theo-
rem is proved for &k = 2. ¥or k > 3, the proof is analogous.

@)

THROREM 2. If the conditions of ’[‘HbORD\[ 1 hold and if we have
the supplementary conditions:

(1) : Jlw) <0, Yo e (B_y, B1); f(Boy) = f(B) =0,
Doy < agy B> gy
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() Plog) = 0, § = —1;10, 1, 20 —\1;1B(BLy) = F(B,) =10,

(iit) w(@)(y + o) — L(cz}l(ﬁ;r) >0 Ve e (B, By, ¢ # o
(2
3i !
(iv) (%) wpanapy s g ol S-‘/('”) dr <
g h(x) h(x)
0 0
B
£ min S-g(-@--}-d.ir, Vi E (o, tgnq)
f=—1,1 i1 ,-:.-')
0

Lhen 3y3tmn (1) has at least k limit cycles swrrounging 2n + 1 stngular poinls,
sinee wn every domain x_; < x << @, there are at least ¥ limit cycles, oul
of which [(¢ 4 1)/2] are stable and [i[2] are unstable.

Proof. The proof is analogous to that in the ease of THEOREM 1,
the difference econsisting of the faet that, here, for the first border we
consider the cwve :

|
—

iifgﬁ@;+gfﬁ-m:wh
]
Bs

where (, = min gt)
i=—1,1 ) h(t)
0

=

»dt.

THEOREM 3. Let the function g(x) salisfy conditions (2). There exist
a function o (x) and the numbers x_; < a_y, 3> dy, 1, SUch that:

(i : 2(0) = 0, [e@) — oi(2) K(2)] >0
(1i) Iz ) <O(x) < Fyz), Yoe(r., )
W) Fi(x) < Fy(oy), F(o_y) < May) Fy(e), o> .

Then, all the limit cycles of system (1), if they ewist, are lying in the '
domain x_; < ¥ < x|

Proof. Using a reasoning analogous to the case of THREOREM 1
and ref. [4], the Timit cycles of sy stemn (1), if they exist, are inside IY.

Remark. 1f  conditions (i) — (ili) in THEOREM 1 are sui-
tably modified, then the limit cycle in the case & == 2 is stable.
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