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Let a(i =1,...,m, j=1,...,n) b(i =1,...,m) and oj =
=1,...,nm) be 1at10na1 numbels ‘For future 1ofelence, we defme the
followmg sets :

] )
X, =10 (@, Yo B s8] Zla,jmj b i=1,...,m}
I=

m

i == {7 = (Y - vy Yu) € iy | Zlaij?/i Z =1, -'-7”}7
=

XQ=Xn@Q", YQ=Yn @
where @ is the set of rational nunbers.
Let f: B* - R and g: R" — R be defined by

flo) = Zlcja:j for all @ = (@, ..., xz,) € B
=

9y) = X by for all y == (y;, ... yn) € B™
We denote by (PQ) the problem | ,
C(PQ) f(#) — max E L3
rze XQ
and by (DQ) the problem
DQ) g(y) — min
"y € Y9. :

Tn this paper, the duality properties of these problems (PQ) and

(DQ) are studied.

REMARK 1. The sets XQ and Y@ arc polytopes and, because a
(=1, 0y By of =1y aym)y bt =1, £..m) %ndc,(g—l .y W) are
mtlonml numbers, auy of Lhon vertiecs is an clement of @Q* emd Q”’ respec-
tively.
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The next lemma is very important for our considerati 3

> ; y iI ) erations. We remark
that a polytope is an intersection of a finite number of closed half-spaces.
A polytope that has a vertex is called a pointed polytope.

LrvMA 1. If I < R% is a nonvoid polytope, then it is a pointed poly-

tope. ]

] Proof. Suppose that L is not pointed. From theorem 35

! } ) n 35 (2, Ch.
it follqws that there exist o' = (2!, ..., zl) e I and 2? --:e(cc2 o "v’v%)he ]1]
& # 2% such that el il §
(1 (1 —t) ot 4 tw2e L for all te R.
Because «' # 27 theve exists aje{l, ..., n} such that »! # 2% Taking

’

e {<~1 — (e} — &)Y, if af — 2} >0
| (=1 —a)(o? — &), if o~ o <0

we get that 2° = (1 — °) &' |- °ta? & I, since ¢°; < 0. This contradicts (1

Hence, L is a pointed polytope. ’ ' i PR e

Using lemma 1, we prove an interesting theorem. For future refe-
rence denote by (P) respectively by (D) the problems :

f(z) - max () — min.
P 5 g 3
) {x e X, (D) {y eY

(T'§[?’OR§IM 2. The following assertions are true:
1) Problem (P) is infeasible (i.e. X = @) if and f pr
5 infe.afsible e }}Q i (fp)f ( ) if and only if problem (PQ)
(23) Problem (P) has no optimal solutions (i.e. sup f(ac)z—l—‘oo)‘ if and
re X

only 1(_)" P;‘o;)jlem (PQ) has no optimal solutions. :
wi) Problem (P) has optimal solutions if and only if probl P

has optimal solutions. ’ foe Ui A

(tw) If a° is an optimal solution of (P) and 2° ts an optimal solution
of (PQ), then f(2°) = f(=). y

Proof. (i) If X = @, then XQ = @, because XQ = X. :

_Let now X = @. We suppose that y~ # ®. Because X is a nonvoid
polytope and X < R’ there exists, by virtue of lema la vertex #° of X. How-
ever, by remark 1 we get that x°c@”. Hence, »°e X n @" = X¢. This
implies that X@ % @, which is a contradiction. Hence, X == ®.

(#1) If sup {f(»)!@eXQ} = - oo, then sup |olexy =i
because X¢Q < X? g Q}- s ik o ®§ . e

Let now sup {f(»)|# € X} = + co. Then for each natural number
k there exists an element 2* € X such that f(z*) > k. Because f is a linear
function, the set X, = {we X|f(x) 2 k} iy for every ke N a nonvoid
polytope. But X < R". Then X, < R for all k€ N. Applying lemma 1,
we get that for every k € N there exists an #* € X such that 2* is a vertex
ot_' X. By virtue of remark 1 we have 2¥ € Q" for every ke N. Then zF €
€X n @ =XQ for every ke N. Now, we have f(zF) 2 k for every
ke N, because z* € X ,. This implies that the function f is not upper boun-
ded on X@. Hence, sup {f(#)| v€ XQ} = H-c0.
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(i1{) Because we have proved that (i) and (i) are true, it results
that problem (P) has optimal sclutions if and only if problem (PQ) has
optimal solutions.

(tv) Let a®e X be an optimal solution of problem (P) and let 2° €
e XQ be an optimal solution of problem (PQ). Because X@Q = X, we have
f2°) Z f(#*). We prove that the inequality cannot hold.

Suppose that f{a°) > f(z°). Then there exists a rational number 1
such that f(*)>t> f(a°). The set X, ={we Xlftw) z t} is a nonvoid
polytope, because 2° € X, and X, = R (since X< RY). Applving lemma 1,
we get that there exists a vertex ¢ of X,. Because t.and ¢;, j =1, ..., n,
are rational numbers and all vertices of X are elementes of @", we have
also z€ Q" Hence, z€ X, n Q" < X n Q" = XQ. '

Similarly, we can prove:

TuEoREM 2. The following assertions are truc:

(1) Problem (D) is infeasidle if and only if problem (DQ) s infea-
sible.

(it) Problem (D) has no optimal solutions if and only tf problem
(DQ) has no optimal solulions.
_ (#91) Problem (D) has optimal solutions if and only if problem (D Q)
has optimal solutions.

(40) If y° is an optimal solution of (D) and 2° is an optimal solulion
of (DQ), then g(y°) = g(z°).

Using theorems 2 and 2" and theorem IL8 from [1]), we get

TurorEM 3. For problems (PQ) and (DQ), one and only one of the
following assertions is lrue:

(3) bo'h problems have optimal solutions and the optimal values of
the objective functions are equal;

(i4) ome of the problems is feasible, wwhile the other 18 infeasible;
in Lhis case, the feasiable problem has no optimal solution;

(iii) both problems are infeasible.
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