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1. Introduction. A subset of a vector space is said to be convex
if together with any two of its points it contains the whole line segment
joining them. J. von Neumann [16], in connection with the 1nt10duct10n
of 1ocally convex topologies, required that only the midpoint of this seg-
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ment belongs to the given set, defining so the T, Teonvex sets. J. W.
Green and W. Gustin [8] defined and studied thé gquasiconvex sets -

a set in a vector space is called quasiconvex if together with any two of
its points x and y it contains all the points dividing the segment [, 7]
into a ratio belonging to a prescribed set A ‘<0, 1[. Some extemmns ot
the notion 'of quasiconvexity were given by A. Aleman |17 an(l Gh Tomdcr
(22]. i
This papu is concerned with p-convex sets, i.c., quasi-convex sets
with A = {p!| where 'p is a given number in 10,1{. In other words, a set
Yin a vector space is said to be p-convex it pY (1 —p) ¥ « Y. The

— ~convex sets or midconvex or also centred-convex [17]) ‘were recent-

ly used in the study of the continuity of Jensen convex Tunctions ({5],
[21]) and of the stability of Jensen inequality ([37]). One of the authors °
of this' paper proved in [14] some separation and support theorems for
p-convex sets in ‘topological vector spaces, and gave in' [15] a Lagrange
multiplier rule in p-convex programming.

N. P. Korneichuk [12], pp. 28—33, proved the following “duahtv
relations™ for the best approximation by olements of convex %etq )

TaROREM 1.1. If Y 4s a nonvoid convex subset of a real normed space
X, then
a) I'or every x e X, the duality relation

t{lle —y || ye Y} =sup {a¥w) —supf{a*(y) 1y e Y} a* e B*,

holds, where B* = {x* € X*: ||a*|| < 1} is the closed unit ball in the dual
space X* of X ; and
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b) For every x e X\Y, there cwists and ¥ in X* with |lo¥|) = 1
such that -

int jlle —ylliy e Y} = ag(x) —sup {ad(y) :y e Y.

In Section 2 of this paper we shall show that Theorem 1.1 remains
true if the set ¥ is supposed to be only p-convex. Section 3 contains ex-
tensions to the p-convex ease of the results of N. . Korneichulk, A, A.
Ligun and V. G. Doronin [13] concerning the best approximation with
conical constraints. Section 4 deals with best approximations by elements
of p-caverns (subsets of a normed space whose complement is a bounded
p-convex set, with nonvoid interior) extending some results proved by
C. Franchetti and 1. Singer [6] in the convex case.

We shall need the following three known results :

THeoREM 1.2 ([14], Theorem 4.4). If Y is a nonvoid p-convex subset

of a real locally conver space X and vy € X\ Y, then there exists x* e X*
such that int {w*(y) 1y € Y| > w¥(a,). : v

TneoreM 1.3 ([14], Theorem 1.2). If Y is a p-convex subset with
ronvoid intertor of « real locally convex space, then every boudary point of
Y is eontained in a closed hyperplane supporting Y.

THEOREM 1.4 ([1], Theorem 3.3). If Yis a p-convex subset of a topo-
logical vector space, then

a) the closure Y of Y is eonvex;

by if xeY, yeint Y and 0 < « <1, then ar + (1 — a) y €int Y,
tn particular, the wntertor of Y is convew.

All the vector spaces considered in this paper will be taken over
the field £ of real numbers.

2. Duality relations for p-convex sets. We need the following exten-
sion of a well-known separation theorem for p-convex sets :

TurorEM 2.1. Let ¥ and Z be two nonvoid and disjoint subsets of
a topological vector space X. If Y is p-convex and % is convex and open,
then Y and Z can be separated by a closed hyperplane in X.

Proof. By Theorem 1.4, a), the closure Y of Y is convex. We state
that ¥Yn Z = 0. Indeed, if €Y n Z, then, since Z is a neighbourhood
of z, it would follow that Z n Y % @, which contradicts the hypotbesis
of the theorem. Now, applying a classical separation theorem ([97], Theo-
rem 9.1}, the sets ¥ and Z can be separated by a closed hyperplane in Y.
It follows that ¥ and Z are separated too by this hyperplane. I

The next lemma is well known and easy to prove (see [127], p. 30) :

Luvna 2.2, If X ds a normed space, r >0 and 2% € X*, then

&

sup {#*2): v e X, |

< 7} = - Y.
Now, we state the first duality theorem :

Tnworem 2.3. If Y ds a nonvoid p-convex subset of a normed space X
and x € X, then the following duality relalion holds :

1) inf{jlz —yll:y € Y} = sup {&*(x) — sup {a*(y): y e Y} : a* € B*},
I yuzy ! !
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where B* = {a* € X* : |a*|| < 1} s the closed unit ball in the dual space
X* of X.
Proof. Put

t =inf{llz —yll:ye X}, s =sup{e¥a) — sup {&¥y):y e Y}:a*e B¥.

Since a*(x) — sap {@¥(y) :y € Y} < a¥(a) — 2*y') < |la —y'|| for all
#*e B* and all y'e Y, we have s <i. As 0e B* it follows that
§ = 0, hence ¢ = s in the case ¢ = 0. Suppose now that ¢ > 0. By Theo-
rem 2.1, the p-convex set ¥ and the open ball

Zo={zeX: ||z — 2 <

can be separated by a closed hyperplane. Therefore, there exist ¥ € X*
with [|2*]] = 1 and ¢ € B sueh that

(2) #(y) <e < x¥2) for all ye Y and all' ze Z.
By (2) and Lemma 2.2, we obtain

sup{zg(y) 1y € Y} < int{adz) : 2 € Z} = inf{af(x — w) : w e X,

lwll << 4§ == ag(x) — sup {xfH(w) : we X, |lw] <) = xxx) — i-||lx¥],
which implies that

=t flaf |l < afx) — sup ¥y)iyeY) <.

The inequalities s <4 and i < s give ¢ = s and Theorem 2.3 is
proven. [
The following theorem contains a condition ensuring that the su-
premum in the right-hand of relation (1) is attained :
_ Tneorey 2.4, Adding to the hypotheses of Theorem 2.3 the condition
#¢ Y, there exists af € X* with ||a¥| = 1 such that the second duality rela-
lion holds :

{(3) inf {|

—yll:ye Y = ada) —sup {af(y) :y € ¥}

Proof. Keeping the notation in the proof of Theorem 2.3, there exists
a sequence (x27)a.exy in B* such that

(4) lim [@f(x) — sup {o}(y) 1y e Y] = s.

" =00

By the Alaoglu-Bourbaki theorem, the closed unit ball B* is w*-com-

b b . , . . -
pact, so that there exist a subnet (2% Jkex (J( is a directed set) of the
sequence (x}) and an element x¥ of B* such that

(5) lim af (&) = af(a’) for all &' e Y.
ke K

From (4) and (5) with #" = &, we derive that

2 }E} sup {2%,(y') 1y’ € ¥} — af(a) — s.
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By (6) and (5) with " =y e X, it follows that
wi(y) = Hm ab () < lmsup {@f (y) 9" € Y} = af(a) — s.
ke Kk kek

Therefore, sup {af(y) 1y € ¥} < af(x) — s or, equivalently,
(7) s < af(w) —sup {ad(y) cy e Y.

Taking into account the definition of s, relation (3) is a consequence
of (7) and Theorem 2.3.

To finish the proof, we have to show that |2¥| = 1. Since « ¢ ¥,
it follows that s == 4> 0 and, by (3), «F # 0. Supposing that {laf)] < 1
(we know that af e B*, ie., |af] <1), we have A-a¥ e B* where
= laeg T S and e

g = (haf)(a) —sup (A ad)(y) :ye YI = r-s>5,

which is a contradiction. The proof of Theorem 2.4 is complete. §

If Y is a subset of a normed space X and 2 €.X, then a projection
of @ onto Y (or a best approvimalion element of x in Y) ig an clement
y € Y sach that |lx — ¢l < [le — %'|| for all ¥’ € Y. From Theorem 2.4,
one can derive a characterization of projections onto p-convex sets :

JOROLLARY 2.5. In order that y be a projection of x onto X it is suffi-
cient, and if Y 18 p-converx, also necessary to exist xy € X* with the proper-
ties: ) |ay=1; b af(e —y) = |lo —yl; o a5(y) = sup @5y :
y e XYl y

Proof. Suppose that xf € X* verifies conditions «), #) and, ¢). Then

o — yll = a¥(x — ) ='of(@ — y") + [#@) = oF)] < af(z —y') <
<llaglllle —y'll = lla — gl for all y’ in Y,

which shows that y i8 a projection of 2 onto Y.
Conversely, suppose that Y is p-convex and let ¥ be a projection
of 2 onto Y. The functional @F in Theorem 2.4 verifies that ||«f|] =1 and

(8) ey || == () L4 sup {wd(y") s y" € Y}
It remains to show that »¥(y) = sup f(y): y' € Y} Otherwise,
af(y) < sup {af(y) 9’ € ¥}, we have
le —yll = llafll lz. —yll 2oz —y) = 25(@) — 25(y) >
> ag(x) — supla(y’) y' e Y,
which contradicts relation (8). B .

[rom Covollary 2.5, one can obtain a well-known characterization
of projection onto convex subsets of Hilbert spaces :
B COROLLARY 2.6. Let X be a Hilbert space, Yo X, xe X\Y and
y € Y. In order that y be a projection of x onto Y, it is sufficient and, if
Y is p-convew, also necessary that (v — y|y" — ) <0 for all y' in Y.
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Proof. Sufficiency. 'We have
le —g'IF=(x—y'le—y)=(@—-y+y—yllo—y+y—y)=
eyl 2m —yly — )+ ly —y S eyl

for all ' in ¥, which shows that y is a projection of 2 onto Y. )

Necessity. If y is a projection of x onto Y, there exists af e A*
verifying conditions @), b) and ¢)in Corollary 2.5. By Riesz’s represen-
tation theorem, thereis a w in X such that |lu| = {lzi] = 1 and z§(2) =
= (zlu) for all ,ze X. Then (z —yw) = afz —y) = |z -yl = Iz —
— 9| |lell, which shows that in the Schwarz inequality one has the equa-
lity sign. Consequently, there is an « € R such that u = a(z — ). Since
& —yll = (&' — yju) = (¥ -~ yla(x — ), it follows that « = (= T
— y[I"% Condition ¢) in Corollary 2.5 gives (y — y'|w) = 0 for all y" in Y,
hence (y — 4’| |l — y[7. (@ — y)) = 0, which implies that (x — yly" —
— ) < 0 for all ¥’ in _ _

Directly (i.c., without appealing to Corollary 2.5), one can prove
a, slightly more general result :

PROPOSITION  2.7. Let X be a pre-Hilbert space, Y < X,z e ANY,
and ye Y. In order that'y be a projection of a onto Y 1t is sufficient and,
if Y'is p-convewx, also necessary that (x —yly" = y) < 0 for all y" in Y.

Proof. The proof of the sufficiency part is the same as for Corollary
2.6. To prove the necessity, we firgt remark that p"y" (1 —p*) y'" € Y
for all y', 4" € ¥ and all » e N. Indeed, the property is true for n =1
hecause Y iy p-convex. Assuming that p*y" 4 (1 — p"y” e Y for a &
in N, we derive that p**y" (1 — p**Ny” = p(p"y’' + 1 — py") +
4+ (1 — p)y” € Y. Therefore p"y’ + (1 — p") )y €Y for all neN.

Now, if 4 is a projection of # onto YandyeX, then p*y’ + (1 —p")y e
€ Y implies that

la —yl2 < e —py — (L —pYwlt=llo —y —p"(¥ — NIt =
= |l —ylIP —2p"x —yly —y) -+ p*lly" —yl*

Therefore, — 2p"(x —wyly’ —y) +p2 Iy, —yl2 >0 or —2(x —yly’ —
—y) + p"lly’ —y|* = 0. Taking # — oo, one obtains (x—yly'—y) <0. 0
The mnext example shows that the p-convexity of Y is essential
for the validity of the necessity part of Corollary 2.5.
Bxavprie 2.8. Let XY =R, Y= {-1, 1}, =0, y=1. Then

int{|z —y'|:9'e¥! = |z —y| =1. Suppose there exists zy € R* =
= R verifying conditions:«), b) and ¢) in Corollary 2.5. Then |zf| = 1
and 1 = |z —y| = a¥(—1), giving the contradiction

—1:1 = a¥(1) = sup{(—Ly/ : y e ¥} =1.

REMARK 2.9. In the case of the convex set Y, Theorems 2.3 and
2.4 were proved by N. P. Korneichuk [12], pp. 28 —33, and. Corollary 2.5
by G. Sh. Rubinshtein [18] (see also A. 1. Garkavi [7]).
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3. Duality relations for hest approximation - with eonieal restrie-
tions, Let X e a vector space. A cone in .\ is a nonvoid subset K of ¥
such that A- K < K for all 2 > 0. If Y is a subset of a normed space X
and I is a cone in X, denote by di(., Y):.X — [0, 00| the distance funce-
tion defined by

(9) A, Y) =inf{la—y|l:y el and y — 2 eK{ =
=inf{|| =k|:' k'eK and x |-k e Y|, z'e X;

di(x, Y) is called the best approvimation of a with conical restriction K
by elements in ¥ (we adopt the convention int'€) = oo).

The problem of the existence of an y, in ¥ with y, — 2 € K such
that di(w, ¥) = llo — y,ll contains as particular cases many approxima-
tion problems with restrictions such as the one-side approximation, i.e.,
the approximation of a funection @ by functions u satisfying w(t) = (1)
(or w(t) < (1) for all ¢ in a given interval. A comprehensive study of
these problems is done'in' [137], Chap. 1I, wherte the duality relations are
systematically applied to obtain exact solutions for various approximation
problems with restrictions (especially with respect to an integral metric)
Tor some concrete classes of functions; the considered approximating
funetions run the subspace of algebraic or trigonometric polynomials,
the space of spline functions, and the set of functions having a degree
of smoothness higher than the approximated function.

In the duality theorem proven below, we suppose that ¥ is a p-con-
vex seb and K iy a convex cone. The following proposition shows that we
gain nothing in generality supposing the cone K only p-convex.

PROPOSITION 3.1. Fovery p-convex cone 18 convea.

Proof. Let K be'a cone in a vector space X. Then X is convex if
and only if I |- I{ < K. Hence, supposing that K is p-convex, we have
to prove K + K < K. If x and y are in K, then p~le and (1 — p) Ty
are in K too (recall that 0 < p < 1) and, therefore, & + 5 = pp Lo
+ (L —p)l —p)ly eK. @

Concerning the distance funetion dg(.,Y), we prove

PROPOSITION 3.2, Let X be a normed space. If K is a convex cone in X
and Y 1s @ nonvoid p-convea subset of X, then the distance function dy(., Y)
18 p-convex, i.e.,

(10) de(pr + (1 —p) o', T) < pdelw, Y) + (1 — p) dy(a’, Y)

for all @ and 2" in X.
Proof. 1t is sufficient to prove (10) when dy(x, ¥) and dy(a’; Y)
are finite numbers. Given e > 0; theve exist y and 4" in ¥ such that y — ,
Yy — el |la—y| < dglw, Y)4ecand || 2" — y'||<dx(r, ¥)+ e. The p-con-
vexity of ¥ and the convexity of K imply py (1 — p)y’' e ¥ and py
+ (1 —p)y —(pr+ (L —p)a) =ply —2) + 1 — Py — &) €K, 50
that “dy(pa + (1 — p) o', ¥) <llpe+ (L —p) (2" — (py + (1 —p)y')| <
S Pl =yl + (0 —=p)lla’ =o'l < pdi(@, T) +(X — p)du(a’, ¥) 4 c. As

e >0 is arbitrary, inequality (10) holds. §
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Let X be a normed space and let /£ be a cone in X. Given a sul-
space Z of X, denote by Z- the algebraic dual'ot Z. For z= in Z' we put

(1) llzrlll = sup{e(#): 2€Z n(—k)y and |z| <1}

(the case ||| 2 [l = oo isnot excluded). It is casily seen that if ||z < oo,
then :

(12) #(z) <=l 2] for all z in Zn(—K).

Also, if 2* e Z*, i.e., ¥ is a continuous linear functional on %, then

!

a
(13) ll=*]] < [|2*], where ||#*|| = sup{|z*2)|:2 e %,

< 1.

2]
Denote also

(14) B, ={zeZ .|zl <1
Now, we are in position to state the main result of this, section :

THEOREM 3.3. Let X be a normed space, let I be a convexr cone
in X, let Z be a subspace of X and let X be a p-convex subsel of 7 such
that (x +K) n Y # @ for all x €Z. If ithe distance function dgi(.,Y)
18 continuous at a least one point tn 7 relatively lo 7, then the duality relation

(15) dg(x, V) =supiz(@) —sup{e(y):ye Y] :2 e B}

holds for all a in Z. If, moreover, w € Z \ Y, then there exists zf € Z* with
250l = 1 sueh that the first supremam in the right side of (15) is achieved
at =5, t.e.,

dg(a, ¥) = zf(a) — supl=fy): y e Y.
Proof. For @z eZ, put K(r) = dg(z, Y) and
(16) S(x) = supfz(z) — supf{z1(y): yeX}: = e B} =
=suplinflz'(@ — y):ye ¥} :2 € B, .
First, we shall show that '
(17) S(a) < E(x).

By (9), E(z) =inf{]| —k|: keK, a +Lke¥), and k=0 -+ I —
—weZ for-all ke K such that v 4- ke Y < Z Therefore, —keZ and
taking into account (12), one obtains

inf{e(e —y)rye¥p<z(@w—a—k <zl |-k < ||
for all' 2 e'B; . Taking the infimum with respect to all & in K such that
@+ keX, it follows that infle(x —y) 1y € Y} < B(a), so that Slz) =
= sup'inf{z’ (e —y):ye Y} :2 € B} < H(«).

Denote by epi X the epigraph of the function %, i.e.,

epi B = {(», «) €Z X R: E(z) < ¢o'.

Since I is p-convex (Proposition 3.2), its epigraph is a p-convex subset
of Z X R. By the hypothesés of the theorem, there is a point z, in Z at
which # is continuous.. We shall show that (2, H(z,) - 1) is an interior
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point of epi E. To this end, by the continuity condition, there cxists a
3 >0 such that |E(z) — E(z))| < 1/2 for all z in Z with [z — 2|l < 3.

- 1
Remark that the neighbourhood {zeZ ]z — 2,[[<< 3} X 1Xz) + i ool

of the point (2, B(z,) - 1) is included in epi ¥, so that (z,, Iz + 1)
will be in the interior of epi I. Indeed, if (2, o) €Z X K ix such that

v 1. .
lz — 2l <€ & and o > H(z) + ?1 , then FE(z) — H(z) < oL implies that

o > B(z) -+ §~ ~ H(e)) + B(z) — B(zg) — B(2),

hence (2, «) €cepi K.
The point (x, B(x)) is a boundary point of epi I because (@, E(x)) €
ecpi B, and if

V={eeZ:llo—z|<r] X 1Bx) — ¢ E) + ¢, r>0, ¢>0,

is a neighbourhood of (z, E(x))in Z X I, then (m, I(x) — ?E) eV \cpi #.

Applying Theorem 1.3, there exists a closed hyperplane in Z x B suppor-
ting epi I at the point (z, E(w)). This means that thereis (2%, 1) € 2% X R =
= (Z x R)*, (&%, A) # (0,0) such that

(18) ) + nB(x) = %) - A«

for all zeZ and all « € R with « > H(2).

If » =0, then z%w) > 2%2) forall z€Z, implying that z* =0,
which contradicts the hypothesis that (2%, ) # (0, 0). Therefore, » # 0
and taking z — » in (18), one obtains

A B(a) = hcae o [B(z) —a] >0 for all o = H(w),

whichimplies A <0. Dividing inequality (18) by — x> 0 and denoting &=
= — a7 2%, one obtains

(19) ei(x) — H(z) >
tor all z€Z andall «e R with o« > H(z). When o = f(2), inequality
(19) becomes

(20) 2(x) — B(2) = #8(») — H(2) for all zeZ.

To conclude the proof of Theorem 3.3, we need the following lemma
which appears in [13], p. 38, but our proof differs from the one given

therein.
LeMMA 3.4. If # €Z° satisfies |l2°|l <1, then

(21) sup{z(2) — B(z) : 2€Z} =supe(y): y e ¥}
If Iz |l >1 (including the case |||z.' || = o0), then
{22) suplz(2) — E(2) : 2 €2} = oo.
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‘ Proof of Lemima 3.4, Let z e with |||z}l < 1, and let y e Y.
From 0e K and y + 0 =y Y, it follows that
0 < By =int{ly —(+®l: kekK,y+hkelj <ly—yll=0
which yields (y). = 0 for all y € X. This equality and the inclusion ¥ < Z
produce
supiz(2)' — B(z) : 2 €7} 2 suple(y) — B(y): y € ¥} —
= supiz(y): ye ¥,
Now, taking into account definition (16) of 5 and incquality (17),
one obtaing
z(2) —sup{z'(y) : y € ¥j < 8(z) < B(z) forrall zeZ
giving the opposite inequality
sup{z'(2) — B(2) : z€Z} <supiz(y): ye Y],
needed for the proof of equality (21).

It |2 |l > 1, then there exists a keZ n (—K) with [[k]| =1 such
that #(k) =1 4+ «, where « >0. Since keZ, it follows (by the hypo-
theses of Theorem 3.3) that Y n (& -+ K) # O, so that there are b’ e K
and y, e Y such that yo =% - & or y, — k =~k e K. For any A > 1,
the relation (n —1)-(—F) € £ implies that vy + M—k) =y, — L

4 (N — 1)~k e K 4+ K < K (see the proof of Proposition 3.1). There,
fore,

B(wk) =mf{|ak —yll: ye ¥, y — M e K} < |IMe — gl <
< MET+Nyoll = 2 + gl
for all % > 1. Consequently,
p(40k) — B(O\E) = N1 4+ «) — E(Ak) = ML - o) —{lyll — 2 =
= ke = llyoll-
Since « >0, AkeZ and —AkeZ for all A > 1, it follows that
sup z-(2) — H(z) 1 2 €Z} = supla (L 2k) — H(Ak) : A 2 1) = oo.-

Lemma 3.4 is proved. -
Now, Tet us continue the proof of Theorem 3.3. We intend to show
that the functional #F constructed above is in By, i. e., |5 < 1.
Supposing the contrary, ||z ||| >1, and using Lemma 3.4 and
inequality (20), 'we obtain

Z5(x) — B(z) > sup{zé(e) — K(2): 2 € £} = oo.

On the other hand, by hypotheses of Theorem 3.3, (¢ -+ K)n Y # O,
30 that H(z) is a finite number. The obtained .contradiction shows tha
we must have |||z || < 1, therefore relation (21) of the same Lemma and
inequality (20) yield :-

si(2) — B(2) > supieg(s) — L(2) : 2 €Z} = suples(y): ye Y.
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Trrom this inequality and inequality (17) one derives that

(23) Sla) = af(x) —sup {ef) e Y} = (&) = S(x),
hence,
(24) E(z) = S(2) = 25 (@) — sup {af(y) : ¥ eY}.

To conclude the proof, we have to show that if ¥eZ\ Y, then
|2l = 1. By (24), 2¥ # 0 because a ¢ Y implies that A(x) > 0. We know
that |[l2F]| < 1. If |lleFll<<1, then [|azlll = 1, where » = ||z 7t > 1, and
reasoning like in the final part of the proot of Theorem 2.4 we get a con-
tradiction.

The proof of Theorem 3.3. is complete. §

RuMARK 3.5. When Z =I{ = X, the distance function di(:,Y) agrees
with the usual distance function d(z, Y) = inf {{le —yll:y e ¥}, e X,
and, as it i8 well known, this function is continuous (in fact it is even Lip-
schitz, i.e., |d(z, Y) — d(a’, Y)| < |l@ — 2'|| for any a, 2’ in X, see [20],
P. 391). Therefore, Theorem 3.3 extends Theorems 2.3 and 2.4, The tunc-
tional dg(-,Y) is not always continuous as is shown by an example in
[13], p. 10.

The following example shows thatl there exist p-convex functions
defined on p-convex sets which are not continuous on the whole domain
of definition.

ExAMrLE 3.6. Let X = R2equipped with the Kuelidean norm and
let

Y={myel:|z|+ Iyl <Y U {(x,y) €Q:|a] + y| = 1],

where ¢ denotes the set of rational numbers. The function f: Y — R,
defined by f(a, y) — |o| -+ ly| for |z + ly| <1, and f(a,§) = 2 for

(@, y) € Q* with || -+ |y| =1, is —91—~convex but it is continuous only
onint Y = {(a,9) e R*: || 4+ ly| < 11.

Like in the case of best approximation by elements of a p-convex
set (Corollary 2.5), from Theorem 3.3 one can derive a characterization
of elements of best approximation with conical restrietions.

CorOLLARY 3.7. Let X be a normed space, let I be a convexr cone in
X, let Z be a subspace of X, xeZ\ Y and ye Yn(x -+ K), where ¥ is
o subset of 7 such that ¥ n(z - ) # O for all zeZ. In order that y be
a projection of x onto ¥ n(x -+ K), it 18 suffictent and, if Y 1is p-convex,
also necessary to exist z, € with the properties : a) |||z, | = 1;b) 2, (z —
—y) = |l —yl; and ¢) 2 (y) =sup{z (y) : y' eY|. If Y is p-convex,
then the functional 2, can be chosen 1o be continuous on Z.

Proof. Let 2, be a functional in Z- satisfying a), b) and ¢). For
every ¥y € ¥ with y' e x + K the inequality (12) implies

o —yll =2 (v —y) =2 (2 —¥) +2H) —2@) <
< (@ —y) <ol e =yl = o=yl

“which shows that ¥ is a projection of x onto Y n(x 4 K).
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Jonversely, suppose that ¥ is p-convex and let y be & pmjecti'on
of ® onto Y n(x -+ K). By Theorem 3.3, there exists ¥ e Z*, with
llz¥1l| =1, such that

(25) |2 — yll = 2f(x) — supfed(y) : y' e Y.

The proot will be complete it we show that sup {zf,"(y_’) e Y} =
— 2¥(y). Otherwise, sup{zf(y): y € Y| >z'(y) and, since x—yé€
e(—K)nZ, inequality (12) yields

le —yll = el e —yll > &t (x) —2f(y) >25(@) —

—suplad(y) s y' e ¥,

contradicting equality (25). ¥

4. Best approximation hy elements of eaverns, A- subset 1 of a
normed space X is called p-cavern if its complement .\ Y is a bounded
p-convex set with nonvoid intevior. The study of best approximation by
elements of caverns (subsets of a normed space with nonvoid bounded
convex and open complement) was done by C. Franchetti and LSinger
[6]. The problem of best approximation by elements of caverns was posed
by V. Klee [10] (see also [11]) in conneetion with the still ansolved pro-
biem of convexity of Chebyshev sets in Hilbert spaces. The term “Klee
cavern” was proposed by K. Asplund [2].

The following theorem extends to p-caverns the main duality result
in [6], Theorem 2.1.

TimoREM  4.1. Let X be a normed space, let ¥ be a p-cavern in X
and xe X N\ Y. Then
(26) inf {||x —yll:ye¥} =inf{sup {#¥(a): 0" e X Y —

— a¥(x) : x* € 8%,
where S* = {a% € X*: ||a*|| = 1} is the unit spheve in the dual space X*
of X.

Proof. Put d =inff{je —yll: ye ¥} and T = inf{sup{r*(xy: o' €
e XN\ Y} — a¥(@) : w* e8%. Let a*c 8% and denote ¢ = sup{@*(x) :
g e X \_Y} (¢is finite because X \ Y is nonvoid and bounded). -

The hyperplane H = {z' € X : o*(z') = ¢! is included in Y. Indeed,

5 = . > N i > ’
it 2 € X \_Y, then ' eint(X \ ¥). Since X \ Y < {a” € X :a%(2x") <
g 1 . o » N td 2 I b
< ¢}, it follows that int(X N\ Y) cint{s” e X :a%(x") < ¢ = {2 eX:
(@' < ¢}, so that a*(2’) < ¢. Therefore, @’ ¢ H showing that H <¥.
By Ascoli’s formula for the distance from a point to a hyperplane in
2 normed space (see [20], p. 24) we have
d—dw Y) = do, T) =int{ls —yl: ye¥} <int{llo — yj:y e H} =
— |a¥(2) — o|/ ¥ ]| = sup{a*(z) 1 € X\ ¥} — a¥(a).
Therefore,

{27) d < infisup{a®(@): @ e X\ Y} —a¥(@): * 8% =L
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Denoting by fr ¥'the boundary of Y, we shall show that
(28) d =inf{|lx —yl|: ye ¥} =inf{|lz — 2’| v &’ efr Y}

Put d' =
d’ > d(z, Y) =d(x, Y) = d. Supposing that d < d’, there is an y in Y
such that | — y] < d'. Let ¢, =int{te [0, 1]: x + y — x) € ¥Y{. Then
Ty = @ + t(y — @) is a boundary point of ¥ and ||z — x| = t,lly — x| <

< ly — x| < d', which contradicts the definition of d’ Consequentb,
d =4d and (28) is proven.

To prove the opposite inequality of (27), lct % be an eclement of

fr ¥ = fr(X \_Y). By Theorem 1.3, there exists &% € 8% such that a*(2") <
< ¥y ior all 2’ e XN Y. Tt follows that

I = inf{sup{y®(az): 2" e X\ Y} — y¥(@) : y* e 8%}
<-supf{a®(a') o 2t XN Y} —a¥(x) < la¥(y’) - @ (a)n<

< lla* iy — ]

= lly" — |l
From this and (28), one obtains
(29) I <inf{|: ry'etr Y =d.

Inequalities (27) and (29) imply that I = d, and Theorem 4.1 is proved. [

Like in the preceding sections, we derive from Theorem 4.1 a cha-
racterization of projections onto p-caverns. The next corollary is analo-
gous to Theorem 3.1 in [6].

COROLLARY 4.2. Let X be a normed space, let Y be a p-cavern in X,
ze X\ Yandye Y. In order that y be a projection of ® onto Y 1t s neces.
sary and sufficient that y efr Y and there exists a functional xf € S* veri-
Tytng the conditions :

a) sup{zd(a’): ¥’ e X\ ¥ — af(e) = inf{sup{a™(a’): o' e X\ Y| —

— a¥(x) : x* e S*

b) 23 (y) = suplag(@) : ¢’ € X\ Y};
€) 2o (y — @) =y — ||

Proof. Admit that y is a projection of x onto Y. Then y efr ¥ =
= fr (X \_Y) and, by Theorem 1.3, there exists o € S* such that af(y) =
= sup{zf(2’) : ' € X \ Y} which shows that equality ) is true. Taking
into account the duality relation (26), one cbtaing

d =y — all > oY) — af(@) = suplo(@) : o’ e X\ Y} — af(a) >
> inf{sup{a*(z’) : " e X \ Y} — a*«x) : a* 8%} =d,

which shows that relations «) and ¢) are also true.

Conversely, suppose y efr ¥ and af € 8* verifies conditions a),
b) and ¢) from the Corollary 4.2. Appealing again to the duality rela-

W

w—a'l|: 2" efr'¥'. The inclusion fr ¥ < ¥ implics that
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tion (26), it follows that

ly — x| = zf(y) — aFf(x) = sup{eF(2) : &' e X\ Y} — «f(2) =

= inf{sup{a*(a’) : &' € X Y} — a*(x) : a* e §* =d,

showing that y is a projection of x onto Y. §

REMARK 4.3. By Corollary 4.2, it results that it v is a prO]ectlon
of z onto Y, then there exists a funchonfil ag € 8% such that the infimum 7
in the duality relation (26) is attained at af. The converse of "this asser-
tion is not true as was shown in [6], i. ¢., the existence of a functional xf
at which the infimum I in the right side of (26) is attained does not imply
the existence of a best approximation clement of x in Y. In the same
paper an example was given of a cavern Y in [* and an clement x of [*
having no best approximation element in Y, and such that the infimum
in the right side of (26) is not attained.
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