L'ANALYSE NUMERIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 16, N° 2, 1987, pp. 95-108 such Best

 $\inf \{\|x - y\|_{L^2(Y)} = x_0^2(x) \quad \text{on } \|x\|_{L^2(Y)} \ge \|y - y\|_{L^2(Y)} \le \|y - y\|_{L^2($ In Section 2 of this paper we shall show that Theorem L1 belining

true if the set T is supposed to be only preservey. Section 3 contains ex-lensions to the accours task of the results of X, P. Kornetchuk, A. X. DUALITY RELATIONS AND CHARACTERIZATIONS OF BEST APPROXIMATION FOR p-CONVEX SETS STEFAN COBZAS and IOAN MUNTEAN (Cluj-Napoca)

1. Introduction. A subset of a vector space is said to be convex if together with any two of its points it contains the whole line segment joining them. J. von Neumann [16], in connection with the introduction of locally convex topologies, required that only the midpoint of this segment belongs to the given set, defining so the $\frac{1}{2}$ -convex sets. J. W.

Green and W. Gustin [8] defined and studied the quasiconvex sets: a set in a vector space is called quasiconvex if together with any two of its points x and y it contains all the points dividing the segment [x, y] into a ratio belonging to a prescribed set $\Delta \subset]0, 1[$. Some extensions of the notion of quasiconvexity were given by A. Aleman [1] and Gh. Toader the Reld R of real numbers. [22].

This paper is concerned with p-convex sets, i.e., quasi-convex sets with $\Delta = \{p\}$, where p is a given number in [0,1]. In other words, a set Y in a vector space is said to be p-convex if $pY + (1-p)Y \subseteq Y$. The $\frac{1}{2}$ -convex sets or midconvex or also centred-convex [17]) were recent-

ly used in the study of the continuity of Jensen convex functions ([5], [21]) and of the stability of Jensen inequality ([3]). One of the authors of this paper proved in [14] some separation and support theorems for p-convex sets in topological vector spaces, and gave in [15] a Lagrange multiplier rule in p-convex programming.

N. P. Korneichuk [12], pp. 28-33, proved the following "duality relations" for the best approximation by elements of convex sets:

THEOREM 1.1. If Y is a nonvoid convex subset of a real normed space X. then

a) For every $x \in X$, the duality relation

 $\inf \{ \|x - y\| : y \in Y \} = \sup \{ x^*(x) - \sup \{ x^*(y) : y \in Y \} : x^* \in B^* \},$ THEOREM 2.3. If I igen newlood a conter sugget of a memod space of

holds, where $B^* = \{x^* \in X^* : ||x^*|| \le 1\}$ is the closed unit ball in the dual space X^* of X; and X^* and X^* and X^* and X^* and X^*

b) For every $x \in X \setminus \overline{Y}$, there exists and x_0^* in X^* with $||x_0^*|| = 1$ such that

$$\inf \{||x-y|| : y \in Y\} = x_0^*(x) - \sup \{x_0^*(y) : y \in Y\}.$$

In Section 2 of this paper we shall show that Theorem 1.1 remains true if the set Y is supposed to be only p-convex. Section 3 contains extensions to the p-convex case of the results of N. P. Korneichuk, A. A. Ligun and V. G. Doronin [13] concerning the best approximation with conical constraints. Section 4 deals with best approximations by elements of p-caverns (subsets of a normed space whose complement is a bounded p-convex set with nonvoid interior) extending some results proved by C. Franchetti and I. Singer [6] in the convex case.

We shall need the following three known results:

THEOREM 1.2 ([14], Theorem 4.4). If Y is a nonvoid p-convex subset of a real locally convex space X and $x_0 \in X \setminus \overline{Y}$, then there exists $x^* \in X^*$ such that $\inf \{x^*(y) : y \in Y\} > x^*(x_0)$.

THEOREM 1.3 ([14], Theorem 1.2). If Y is a p-convex subset with nonvoid interior of a real locally convex space, then every boudary point of Y is contained in a closed hyperplane supporting Y.

THEOREM 1.4 ([1], Theorem 3.3). If Y is a p-convex subset of a topological vector space, then a) the closure \overline{Y} of Y is convex;

b) if $x \in \overline{Y}$, $y \in \text{int } Y \text{ and } 0 < \alpha < 1$, then $\alpha x + (1 - \alpha) y \in \text{int } Y$: in particular, the interior of Y is convex.

All the vector spaces considered in this paper will be taken over the field R of real numbers.

s romerennel with a team as seen, i.e., aread entered wets 2. Duality relations for p-convex sets. We need the following extension of a well-known separation theorem for p-convex sets:

THEOREM 2.1. Let Y and Z be two nonvoid and disjoint subsets of a topological vector space X. If Y is p-convex and Z is convex and open, then Y and Z can be separated by a closed hyperplane in X.

Proof. By Theorem 1.4, a), the closure \overline{Y} of Y is convex. We state that $\overline{Y} \cap Z = \emptyset$. Indeed, if $x \in \overline{Y} \cap Z$, then, since Z is a neighbourhood of x, it would follow that $Z \cap Y \neq \emptyset$, which contradicts the hypothesis of the theorem. Now, applying a classical separation theorem ([9], Theorem 9.1), the sets \overline{Y} and \overline{Z} can be separated by a closed hyperplane in X. It follows that Y and Z are separated too by this hyperplane.

The next lemma is well known and easy to prove (see [12], p. 30):

LEMMA 2.2. If X is a normed space, r > 0 and $x^* \in X^*$, then

$$\sup \{x^*(x) : x \in X, \|x\| < r\} = r \cdot \|x^*\|.$$

Now, we state the first duality theorem:

THEOREM 2.3. If Y is a nonvoid p-convex subset of a normed space X and $x \in X$, then the following duality relation holds:

(1)
$$\inf\{||x-y||: y \in Y\} = \sup\{x^*(x) - \sup\{x^*(y): y \in Y\}: x^* \in B^*\},$$

where $B^* = \{x^* \in X^* : ||x^*|| \le 1\}$ is the closed unit ball in the dual space X^* of X. Proof. Put

$$i = \inf\{\|x - y\| : y \in Y\}, \ s = \sup\{x^*(x) - \sup\{x^*(y) : y \in Y\} : x^* \in B^*\}.$$

Since $x^*(x) - \sup \{x^*(y) : y \in Y\} \le x^*(x) - x^*(y') \le ||x - y'||$ for all $x^* \in B^*$ and all $y' \in Y$, we have $s \leq i$. As $0 \in B^*$, it follows that $s \ge 0$, hence i = s in the case i = 0. Suppose now that i > 0. By Theorem 2.1, the p-convex set Y and the open ball

$$Z=\{z\in X: \|x-z\|< i\}$$

can be separated by a closed hyperplane. Therefore, there exist $x_0^* \in X^*$ with $||x^*|| = 1$ and $c \in R$ such that

(2)
$$x_0^*(y) \leqslant c < x_0^*(z)$$
 for all $y \in Y$ and all $z \in Z$.

By (2) and Lemma 2.2, we obtain

$$\sup\{x_0^*(y):y\in Y\} \leqslant \inf\{x_0^*(z):z\in Z\} = \inf\{x_0^*(x-w):w\in X,\\ \|w\|< i\} = x_0^*(x) - \sup\{x_0^*(w):w\in X,\|w\|< i\} = x_0^*(x) - i\cdot\|x_0^*\|,$$
 which implies that

$$i = i \cdot ||x_0^*|| \le x_0^*(x) - \sup\{x_0^*(y) : y \in Y\} \le s.$$

The inequalities $s\leqslant i$ and $i\leqslant s$ give i=s and Theorem 2.3 is proven. Just W. (Walandilana Walling A. L. S. S. Salli see again 25 Justill in

The following theorem contains a condition ensuring that the supremum in the right-hand of relation (1) is attained:

THEOREM 2.4. Adding to the hypotheses of Theorem 2.3 the condition $x \notin Y$, there exists $x_0^* \in X^*$ with $||x_0^*|| = 1$ such that the second duality relation holds:

(3)
$$\inf \{||x-y|| : y \in Y\} = x_0^*(x) - \sup \{x_0^*(y) : y \in Y\}.$$

Proof. Keeping the notation in the proof of Theorem 2.3, there exists a sequence $(x_n^*)_{n\in\mathbb{N}}$ in B^* such that

(4)
$$\lim_{n \to \infty} [x_n^*(x) - \sup \{x_n^*(y) : y \in Y\}] = s.$$

By the Alaoghi-Bourbaki theorem, the closed unit ball B^* is w^* -compact, so that there exist a subnet $(x_{n}^*)_{k \in K}$ (K is a directed set) of the sequence (x_n^*) and an element x_0^* of B^* such that

(5)
$$\lim_{k \in K} x_{n_k}^*(x') = x_0^*(x') \text{ for all } x' \in X.$$
From (4) and (5) with $x' \in X$.

From (4) and (5) with x' = x, we derive that

(6)
$$\lim_{k \in K} \sup \left\{ x^*_{k}(y') : y' \in Y \right\} = x_0^*(x) - s.$$

By (6) and (5) with $x' = y \in Y$, it follows that

$$x_0^*(y) = \lim_{k \in K} x_{n_k}^*(y) \le \lim_{k \in K} \sup \left\{ x_{n_k}^*(y') : y' \in Y \right\} = x_0^*(x) - s.$$

Therefore, sup $\{x_0^*(y): y \in Y\} \leq x_0^*(x) - s$ or, equivalently,

$$(7) s \leq x_0^*(x) - \sup \{x_0^*(y) : y \in Y\}.$$

Taking into account the definition of s, relation (3) is a consequence of (7) and Theorem 2.3.

To finish the proof, we have to show that $\|x_0^*\|=1$. Since $x\notin \overline{Y}$, it follows that s=i>0 and, by (3), $x_0^*\neq 0$. Supposing that $\|x_0^*\|<1$ (we know that $x_0^*\in B^*$, i.e., $\|x_0^*\|\leq 1$), we have $\lambda\cdot x_0^*\in B^*$, where $\lambda=\|x_0^*\|^{-1}>1$, and

$$s \geqslant (\lambda \cdot x_0^*)(x) - \sup \{(\lambda \cdot x_0^*)(y) : y \in Y\} = \lambda \cdot s > s,$$

which is a contradiction. The proof of Theorem 2.4 is complete.

If Y is a subset of a normed space X and $x \in X$, then a projection of x onto Y (or a best approximation element of x in Y) is an element $y \in Y$ such that $||x - y|| \le ||x - y'||$ for all $y' \in Y$. From Theorem 2.4, one can derive a characterization of projections onto p-convex sets:

COROLLARY 2.5. In order that y be a projection of x onto Y it is sufficient, and if Y is p-convex, also necessary to exist $x_0^* \in X^*$ with the properties: a) $\|x_0^*\| = 1$; b) $x_0^*(x-y) = \|x-y\|$; c) $x_0^*(y) = \sup\{x_0^*(y'): y' \in Y\}$.

 $y' \in X$. Proof. Suppose that $x_0^* \in X^*$ verifies conditions a), b) and c). Then

$$||x - y|| = x_0^*(x - y) = x_0^*(x - y') + [x_0^*(y') - x_0^*(y)] \le x_0^*(x - y') \le x_0^*(x - y')$$

$$\|x_0^*\| \|x - y'\| = \|x - y'\| \text{ for all } y' \text{ in } Y,$$

which shows that y is a projection of x onto Y.

Conversely, suppose that Y is p-convex and let y be a projection of x onto Y. The functional x_0^* in Theorem 2.4 verifies that $\|x_0^*\| = 1$ and

(8)
$$||x - y|| = x_0^*(x) - \sup \{x_0^*(y') : y' \in Y\}.$$

It remains to show that $x_0^*(y) = \sup \{x_0^*(y') : y' \in Y\}$. Otherwise, $x_0^*(y) < \sup \{x_0^*(y') : y' \in Y\}$, we have

$$\|x-y\| = \|x_0^*\| \|x-y\| \geqslant x_0^*(x-y) = x_0^*(x) - x_0^*(y) >$$
 $> x_0^*(x) - \sup\{x_0^*(y') : y' \in Y\},$

which contradicts relation (8).

From Corollary 2.5, one can obtain a well-known characterization of projection onto convex subsets of Hilbert spaces:

COROLLARY 2.6. Let X be a Hilbert space, $Y \subset X$, $x \in X \setminus \overline{Y}$ and $y \in Y$. In order that y be a projection of x onto Y, it is sufficient and, if Y is p-convex, also necessary that $(x - y | y' - y) \leq 0$ for all y' in Y.

- Proof. Sufficiency. We have

5

$$||x - y'||^2 = (x - y'|x - y') = (x - y + y - y'|x - y + y - y') =$$

$$= ||x - y||^2 + 2(x - y|y - y') + ||y - y'||^2 \geqslant ||x - y||^2$$

for all y' in Y, which shows that y is a projection of x onto Y.

Necessity. If y is a projection of x onto Y, there exists $x_0^* \in X^*$ verifying conditions a), b) and c) in Corollary 2.5. By Riesz's representation theorem, there is a u in X such that $\|u\| = \|x_0^*\| = 1$ and $x_0^*(z) = (z|u)$ for all $z \in X$. Then $(x-y|u) = x_0^*(x-y) = \|x-y\| = \|x-y\| = \|x-y\|$ which shows that in the Schwarz inequality one has the equality sign. Consequently, there is an $\alpha \in R$ such that $u = \alpha(x-y)$. Since $\|x-y\| = (x-y|u) = (x-y|\alpha(x-y))$, it follows that $\alpha = \|x-y\|^{-1}$. Condition c) in Corollary 2.5 gives $(y-y'|u) \geqslant 0$ for all y' in Y, hence (y-y') = (x-y) = (x-y) = 0, which implies that (x-y) = (x-y) = 0

Directly (i.e., without appealing to Corollary 2.5), one can prove a slightly more general result:

PROPOSITION 2.7. Let X be a pre-Hilbert space, $Y \subset X$, $x \in X \setminus \overline{Y}$, and $y \in Y$. In order that y be a projection of x onto Y it is sufficient and, if Y is p-convex, also necessary that $(x - y | y' - y) \leq 0$ for all y' in Y.

Proof. The proof of the sufficiency part is the same as for Corollary 2.6. To prove the necessity, we first remark that $p^ny' + (1 - p^n) \ y'' \in Y$ for all $y', y'' \in Y$ and all $n \in N$. Indeed, the property is true for n = 1 because Y is p-convex. Assuming that $p^ky' + (1 - p^k)y'' \in Y$ for a k in N, we derive that $p^{k+1}y' + (1 - p^{k+1})y'' = p(p^ky' + (1 - p^k)y'') + (1 - p)y'' \in Y$. Therefore $p^ny' + (1 - p^n) \ y'' \in Y$ for all $n \in N$.

Now, if y is a projection of x onto Y and $y \in Y$, then $p^n y' + (1 - p^n)y \in Y$ implies that

$$||x - y||^{2} \le ||x - p^{n}y' - (1 - p^{n})y||^{2} = ||x - y - p^{n}(y' - y)||^{2} =$$

$$= ||x - y||^{2} - 2p^{n}(x - y|y' - y) + p^{2n}||y' - y||^{2}.$$

Therefore, $-2p^{u}(x-y|y'-y)+p^{2u}\|y'-y\|^{2}\geqslant 0$ or $-2(x-y|y'-y)+p^{u}\|y'-y\|^{2}\geqslant 0$. Taking $u\to\infty$, one obtains $(x-y|y'-y)\leqslant 0$.

The next example shows that the p-convexity of Y is essential for the validity of the necessity part of Corollary 2.5.

EXAMPLE 2.8. Let $X=R, Y=\{-1, 1\}, x=0, y=1$. Then $\inf\{|x-y'|: y'\in Y\}=|x-y|=1$. Suppose there exists $x_0^*\in R^*=R$ verifying conditions a), b) and c) in Corollary 2.5. Then $|x_0^*|=1$ and $1=|x-y|=x_0^*(+1)$, giving the contradiction

$$-1 \cdot 1 = x_{\mathfrak{d}}^*(1) = \sup\{(-1)y' : y' \in Y\} = 1.$$

REMARK 2.9. In the case of the convex set Y, Theorems 2.3 and 2.4 were proved by N. P. Korneĭchuk [12], pp. 28—33, and Corollary 2.5 by G. Sh. Rubinshteĭn [18] (see also A. L. Garkayi [7]).

7

3. Duality relations for best approximation with conical restrictions. Let X be a vector space. A cone in X is a nonvoid subset K of X such that $\lambda \cdot K \subset K$ for all $\lambda \geq 0$. If Y is a subset of a normed space X and K is a cone in X, denote by $d_K(., Y): X \to [0, \infty]$ the distance function defined by

(9)
$$d_{K}(x,Y) = \inf \{ ||x-y|| : y \in Y \text{ and } y-x \in K \} =$$

$$= \inf \{ ||-k|| : k \in K \text{ and } x+k \in Y \}, x \in X ;$$

$$d_{K}(x,Y) \text{ is called the best approximation of } x \text{ with conical restriction } K$$
by algorithm in Y (we adopt the convention in X)

by elements in Y (we adopt the convention inf $\emptyset = \infty$).

The problem of the existence of an y_0 in Y with $y_0 - x \in K$ such that $d_K(x, Y) = ||x - y_0||$ contains as particular cases many approximation problems with restrictions such as the one-side approximation, i.e., the approximation of a function x by functions u satisfying $u(t) \ge x(t)$ (or $u(t) \leq x(t)$) for all t in a given interval. A comprehensive study of these problems is done in [13], Chap. II, where the duality relations are systematically applied to obtain exact solutions for various approximation problems with restrictions (especially with respect to an integral metric) for some concrete classes of functions; the considered approximating functions run the subspace of algebraic or trigonometric polynomials, the space of spline functions, and the set of functions having a degree of smoothness higher than the approximated function.

In the duality theorem proven below, we suppose that Y is a p-convex set and K is a convex cone. The following proposition shows that we gain nothing in generality supposing the cone K only p-convex.

Proposition 3.1. Every p-convex cone is convex.

Proof. Let K be a cone in a vector space X. Then K is convex if and only if $K + K \subset K$. Hence, supposing that K is p-convex, we have to prove $K + K \subset K$. If x and y are in K, then $p^{-1}x$ and $(1-p)^{-1}y$ are in K too (recall that $0) and, therefore, <math>x + y = pp^{-1}x +$ $+ (1 - p)(1 - p)^{-1}y \in K$.

Concerning the distance function $d_{\kappa}(.,Y)$, we prove

Proposition 3.2. Let X be a normed space. If K is a convex cone in X and Y is a nonvoid p-convex subset of X, then the distance function $d_K(., Y)$ is p-convex, i.e.,

(10)
$$d_{K}(px + (1-p) x', Y) \leq pd_{K}(x, Y) + (1-p) d_{K}(x', Y)$$
for all x and x' in X .

Proof. It is sufficient to prove (10) when $d_{\kappa}(x, Y)$ and $d_{\kappa}(x', Y)$ are finite numbers. Given $\varepsilon > 0$, there exist y and y' in Y such that $y \perp x$, $y' - x' \in K, ||x - y|| < d_K(x, Y) + \varepsilon \text{ and } ||x' - y'|| < d_K(x, Y) + \varepsilon.$ The p-convexity of Y and the convexity of K imply $py + (1 - p)y' \in Y$ and py + $+(1-p)y'-(px+(1-p)x')=p(y-x)+1-p)(y'-x')\in K,$ so that $d_K(px + (1-p)x', Y) \le \|px + (1-p)(x' - (py + (1-p)y')\| \le$ $\leq p \|x - y\| + (1 - p) \|x' - y'\| . As$ $\varepsilon > 0$ is arbitrary, inequality (10) holds.

Let X be a normed space and let K be a cone in X. Given a subspace Z of X, denote by Z^{\cdot} the algebraic dual of Z. For z in Z we put

(11) $||z|| = \sup\{z(z) : z \in Z \cap (-K) \text{ and } ||z|| \le 1\}$

(the case $||z||| = \infty$ is not excluded). It is easily seen that if $|||z||| < \infty$, then what in the interior of eq. A ludest, if $(\varepsilon, z) \in \mathbb{Z} \times \mathbb{R}$ is such than

(12) $||z'(z)| \le |||z'|| ||z|| ||z||$

Also, if $z^* \in \mathbb{Z}^*$, i.e., z^* is a continuous linear functional on \mathbb{Z} , then

 $|||z^*||| \le ||z^*||$, where $||z^*|| = \sup\{|z^*(z)| : z \in Z, ||z|| \le 1\}$. (13)Denote also

(14)
$$B_{z} = \{z \in Z : |||z||| \leq 1\}$$

 $B_z^{\star}=\{z^{\star}\in Z^{\star}:\,\|\|z^{\star}\|\|_{\infty}\leq 1\}.$ Now, we are in position to state the main result of this section :

THEOREM 3.3. Let X be a normed space, let K be a convex cone in X, let Z be a subspace of X and let Y be a p-convex subset of Z such that $(x+K) \cap Y \neq \emptyset$ for all $x \in \mathbb{Z}$. If the distance function $d_K(\cdot,Y)$ is continuous at a least one point in Z relatively to Z, then the duality relation

(15)
$$d_{E}(x, Y) = \sup\{z^{*}(x) - \sup\{z^{*}(y) : y \in Y\} : z^{*} \in B_{Z}^{*}\}$$

holds for all x in Z. If, moreover, $x \in Z \setminus \overline{Y}$, then there exists $z_0^* \in Z^*$ with $\||z_0^*|\| = 1$ such that the first supremum in the right side of (15) is achieved $at z_0^*, i.e.,$

$$d_{\mathsf{K}}(x, Y) = z_0^*(x) - \sup\{z_0^*(y) : y \in Y\}.$$

Proof. For
$$x \in Z$$
, put $E(x) = d_E(x, Y)$ and
$$S(x) = \sup\{z^*(x) - \sup\{z^*(y) : y \in Y\} : z^* \in B_z^*\} = \sup\{\inf\{z^*(x - y) : y \in Y\} : z^* \in B_z^*\}.$$

First, we shall show that

$$(17) S(x) \leq E(x).$$

By (9), $E(x) = \inf\{\|-k\|: k \in K, x + k \in Y\}, \text{ and } k = x + k - k = K$ $-x \in Z$ for all $k \in K$ such that $x + k \in Y \subset Z$. Therefore, $-k \in Z$ and taking into account (12), one obtains

$$\inf\{z \cdot (x-y) : y \in Y\} \leqslant z \cdot (x-x-k) \leqslant \||z \cdot \|| \|-k\| \leqslant \|-k\|$$

for all $z \in B_z^*$. Taking the infimum with respect to all k in K such that $x + k \in Y$, it follows that $\inf\{x(x - y) : y \in Y\} \le E(x)$, so that S(x) = $= \sup \inf \{z \cdot (x - y) : y \in Y\} : z \in B_z\} \le E(x).$

Denote by epi E the epigraph of the function E, i.e.,

$$\mathrm{epi}\; E = \{(z,\; \alpha) \in Z \times R : \; E(z) \; \leqslant \; \alpha \}.$$

Since E is p-convex (Proposition 3.2), its epigraph is a p-convex subset of $Z \times R$. By the hypotheses of the theorem, there is a point z_0 in Z at which E is continuous. We shall show that $(z_0, E(z_0) + 1)$ is an interior point of epi E. To this end, by the continuity condition, there exists a $\delta>0$ such that $|E(z)-E(z_0)|<1/2$ for all z in Z with $||z-z_0||<\delta$. Remark that the neighbourhood $\{z\in Z: ||z-z_0||<\delta\}\times]E(z_0)+\frac{1}{2}$, $\infty[$ of the point $(z_0,\,E(z_0)+1)$ is included in epi E, so that $(z_0,\,E(z_0)+1)$ will be in the interior of epi E. Indeed, if $(z,\,\alpha)\in Z\times R$ is such that $||z-z_0|| < \delta$ and $\alpha>E(z_0)+\frac{1}{2}$, then $E(z)-E(z_0)<\frac{1}{2}$ implies that

$$lpha > E(z_0) + rac{1}{2} > E(z_0) + E(z) - E(z_0) = E(z),$$

hence $(z, \alpha) \in \text{epi } E$.

The point (x, E(x)) is a boundary point of epi E because $(x, E(x)) \in$ epi E, and if

$$V = \{z \in Z : ||x - z|| < r\} \times]E(x) - \epsilon, E(x) + \epsilon[, r > 0, \epsilon > 0,$$

is a neighbourhood of (x, E(x)) in $Z \times R$, then $\left(x, E(x) - \frac{\varepsilon}{2}\right) \in V \setminus \text{epi } E$.

Applying Theorem 1.3, there exists a closed hyperplane in $Z \times R$ supporting epi E at the point (x, E(x)). This means that there is $(z^*, \lambda) \in Z^* \times R = (Z \times R)^*$, $(z^*, \lambda) \neq (0, 0)$ such that

(18)
$$z^*(x) + \lambda \cdot E(x) \geqslant z^*(z) + \lambda \cdot \alpha$$

for all $z \in \mathbb{Z}$ and all $\alpha \in \mathbb{R}$ with $\alpha \geqslant E(z)$.

If $\lambda = 0$, then $z^*(x) \ge z^*(z)$ for all $z \in Z$, implying that $z^* = 0$, which contradicts the hypothesis that $(z^*, \lambda) \ne (0, 0)$. Therefore, $\lambda \ne 0$ and taking z = x in (18), one obtains

$$\lambda \cdot E(x) \geqslant \lambda \cdot \alpha \Leftrightarrow \lambda \cdot [E(x) - \alpha] \geqslant 0 \text{ for all } \alpha \geqslant E(x),$$

which implies $\lambda \leq 0$. Dividing inequality (18) by $-\lambda > 0$ and denoting $z_0^* = -\lambda^{-1} \cdot z^*$, one obtains

(19)
$$z_0^*(x) - E(x) \ge z_0^*(z) - \alpha$$

for all $z \in \mathbb{Z}$ and all $\alpha \in \mathbb{R}$ with $\alpha \geq E(z)$. When $\alpha = E(z)$, inequality (19) becomes

(20)
$$z_0^*(x) - E(x) \ge z_0^*(z) - E(z)$$
 for all $z \in \mathbb{Z}$.

To conclude the proof of Theorem 3.3, we need the following lemma which appears in [13], p. 38, but our proof differs from the one given therein.

LEMMA 3.4. If $z^{\cdot} \in Z^{\cdot}$ satisfies $|||z^{\cdot}||| \leq 1$, then

(21)
$$\sup\{z^{\cdot}(z) - E(z) : z \in Z\} = \sup\{z^{\cdot}(y) : y \in Y\}.$$

If |||z||| > 1 (including the case $|||z||| = \infty$), then

$$\sup\{z'(z)-E(z):z\in Z\}=\infty.$$

Proof of Lemma 3.4. Let $z \in Z$ with $|||z|||| \le 1$, and let $y \in Y$. From $0 \in K$ and $y + 0 = y \in Y$, it follows that

 $0 \le E(y) = \inf\{\|y - (y + k)\|: k \in K, y + k \in Y\} \le \|y - y\| = 0$ which yields E(y) = 0 for all $y \in Y$. This equality and the inclusion $Y \subset Z$ produce

$$\sup\{z\cdot(z) - E(z) : z \in Z\} \ge \sup\{z\cdot(y) - E(y) : y \in Y\} = \\ = \sup\{z\cdot(y) : y \in Y\}.$$

Now, taking into account definition (16) of S and inequality (17), one obtains

$$z(z) = \sup\{z(y) : y \in Y\} \leqslant S(z) \leqslant E(z) \text{ for all } z \in Z$$

giving the opposite inequality

$$\sup\{z'(z) - E(z) : z \in Z\} \le \sup\{z'(y) : y \in Y\},$$

needed for the proof of equality (21).

If ||z||| > 1, then there exists a $k \in \mathbb{Z} \cap (-K)$ with ||k|| = 1 such that $z(k) = 1 + \alpha$, where $\alpha > 0$. Since $k \in \mathbb{Z}$, it follows (by the hypotheses of Theorem 3.3) that $Y \cap (k+K) \neq \emptyset$, so that there are $k' \in K$ and $y_0 \in Y$ such that $y_0 = k + k'$ or $y_0 - k = k' \in K$. For any $\lambda \ge 1$, the relation $(\lambda - 1) \cdot (-k) \in K$ implies that $y_0 + \lambda(-k) = y_0 - k + (\lambda - 1)(-k) \in K + K \subset K$ (see the proof of Proposition 3.1). Therefore,

$$\begin{split} E(\lambda k) &= \inf\{\|\lambda k - y\| \colon y \in Y, \ y - \lambda k \in K\} \leqslant \|\lambda k - y_0\| \leqslant \\ &\leqslant \lambda \|k\| + \|y_0\| = \lambda + \|y_0\| \end{split}$$

for all $\lambda \ge 1$. Consequently,

$$z \cdot (+\lambda k) - E(\lambda k) = \lambda (1 + \alpha) - E(\lambda k) \ge \lambda (1 + \alpha) - \|y_0\| - \lambda = \lambda \alpha - \|y_0\|.$$

Since $\alpha > 0$, $\lambda k \in \mathbb{Z}$ and $-\lambda k \in \mathbb{Z}$ for all $\lambda \geqslant 1$, it follows that

$$\sup\{z\cdot(z)\,-\,E(z)\,:\,z\in Z\}\,\geqslant\,\sup\{z\cdot(\,+\,\lambda k)\,-\,E(\,\lambda k)\,:\,\,\lambda\,\geqslant\,1\}\,=\,\infty.$$

Lemma 3.4 is proved.

Now, let us continue the proof of Theorem 3.3. We intend to show that the functional z_0^* constructed above is in B_{z_0} , i. e., $||z_0^*|| \le 1$.

Supposing the contrary, $\||z_0^*\|| > 1$, and using Lemma 3.4 and inequality (20), we obtain

$$z_0^*(x)-E(x)\geqslant \sup\{z_0^*(z)-E(z):z\in Z\}=\infty.$$

On the other hand, by hypotheses of Theorem 3.3, $(x + K) \cap Y \neq \emptyset$, so that E(x) is a finite number. The obtained contradiction shows that we must have $|||z_0^*||| \leq 1$, therefore relation (21) of the same Lemma and inequality (20) yield:

$$z_0^*(x) - E(x) \ge \sup\{z_0^*(z) - E(z) : z \in Z\} = \sup\{z_0^*(y) : y \in Y\}.$$

10

From this inequality and inequality (17) one derives that

(23)
$$S(x) \ge z_0^*(x) - \sup\{z_0^*(y) : y \in Y\} \ge E(x) \ge S(x),$$

hence,

104

(24)
$$E(x) = S(x) = z_0^*(x) - \sup\{z_0^*(y) : y \in Y\}.$$

To conclude the proof, we have to show that if $x \in \mathbb{Z} \setminus \overline{Y}$, then $|||z_0^*||| = 1$. By (24), $z_0^* \neq 0$ because $x \notin \overline{Y}$ implies that E(x) > 0. We know that $|||z_0^*||| \leq 1$. If $|||z_0^*||| < 1$, then $|||\lambda z_0||| = 1$, where $\lambda = |||z_0|||^{-1} > 1$, and reasoning like in the final part of the proof of Theorem 2.4 we get a contradiction.

The proof of Theorem 3.3. is complete.

REMARK 3.5. When Z=K=X, the distance function $d_K(\cdot,Y)$ agrees with the usual distance function $d(x,Y)=\inf\{\|x-y\|:y\in Y\},\ x\in X,$ and, as it is well known, this function is continuous (in fact it is even Lipschitz, i.e., $|d(x,Y)-d(x',Y)|\leqslant \|x-x'\|$ for any x,x' in X, see [20], p. 391). Therefore, Theorem 3.3 extends Theorems 2.3 and 2.4. The functional $d_K(\cdot,Y)$ is not always continuous as is shown by an example in [13], p. 10.

The following example shows that there exist *p*-convex functions defined on *p*-convex sets which are not continuous on the whole domain of definition.

EXAMPLE 3.6. Let $X=R^2$ equipped with the Euclidean norm and let

$$Y = \{(x, y) \in R^2 : |x| + |y| < 1\} \cup \{(x, y) \in Q^2 : |x| + |y| = 1\},$$

where Q denotes the set of rational numbers. The function $f: Y \to R$, defined by f(x, y) = |x| + |y| for |x| + |y| < 1, and f(x, y) = 2 for $(x, y) \in Q^2$ with |x| + |y| = 1, is $\frac{1}{2}$ -convex but it is continuous only on int $Y = \{(x, y) \in R^2 : |x| + |y| < 1\}$.

Like in the case of best approximation by elements of a p-convex set (Corollary 2.5), from Theorem 3.3 one can derive a characterization of elements of best approximation with conical restrictions.

COROLLARY 3.7. Let X be a normed space, let K be a convex cone in X, let Z be a subspace of X, $x \in Z \setminus \overline{Y}$ and $y \in Y \cap (x + K)$, where Y is a subset of Z such that $Y \cap (z + K) \neq \emptyset$ for all $z \in Z$. In order that y be a projection of x onto $Y \cap (x + K)$, it is sufficient and, if Y is p-convex, also necessary to exist $z_0 \in Z$: with the properties: a) $||z_0|| = 1$; b) $z_0 (x - y) = ||x - y||$; and c) $z_0 (y) = \sup\{z_0 (y') : y' \in Y\}$. If Y is p-convex, then the functional z_0 can be chosen to be continuous on Z.

Proof. Let z_0 be a functional in Z satisfying a), b) and c). For every $y' \in Y$ with $y' \in x + K$ the inequality (12) implies

$$||x - y|| = z_0 (x - y) = z_0 (x - y') + z_0 (y') - z_0 (y) \le z_0 (x - y') \le ||z_0|| ||x - y'|| = ||x - y'||,$$

which shows that y is a projection of x onto $Y \cap (x + K)$.

Conversely, suppose that Y is p-convex and let y be a projection of x onto $Y \cap (x + K)$. By Theorem 3.3, there exists $z_0^* \in Z^*$, with

p-CONVEX SETS

 $\|\|z_0^*\|\| = 1$, such that $\|x - y\| = z_0^*(x) - \sup\{z_0^*(y') : y' \in Y\}.$

The proof will be complete if we show that $\sup\{z_0^*(y'): y' \in Y\} = z_0^*(y)$. Otherwise, $\sup\{z_0^*(y'): y' \in Y\} > z_0^*(y)$ and, since $x - y \in (-K) \cap Z$, inequality (12) yields

$$\|x-y\| = \||z_0^*\|| \|x-y\| \geqslant z_0^*(x) - z_0^*(y) > z_0^*(x) - \sup\{z_0^*(y'): y' \in Y\},$$

contradicting equality (25).

4. Best approximation by elements of caverns. A subset Y of a normed space X is called p-cavern if its complement $X \setminus Y$ is a bounded p-convex set with nonvoid interior. The study of best approximation by elements of caverns (subsets of a normed space with nonvoid bounded convex and open complement) was done by C. Franchetti and I.Singer [6]. The problem of best approximation by elements of caverns was posed by V. Klee [10] (see also [11]) in connection with the still unsolved problem of convexity of Chebyshev sets in Hilbert spaces. The term "Klee cavern" was proposed by E. Asplund [2].

The following theorem extends to p-caverns the main duality result in [6]. Theorem 2.1.

THEOREM 4.1. Let X be a normed space, let Y be a p-cavern in X and $x \in X \setminus Y$. Then

(26)
$$\inf \{ \|x - y\| : y \in Y \} = \inf \{ \sup \{ x^*(x') : x' \in X \setminus Y \} - x^*(x) : x^* \in S^* \},$$

where $S^* = \{x^* \in X^* : ||x^*|| = 1\}$ is the unit sphere in the dual space X^* of X.

Proof. Put $d = \inf\{\|x - y\| : y \in Y\}$ and $I = \inf\{\sup\{x^*(x') : x' \in X \setminus Y\} - x^*(x) : x^* \in S^*\}$. Let $x^* \in S^*$, and denote $c = \sup\{x^*(x') : x' \in X \setminus Y\}$ (c is finite because $X \setminus Y$ is nonvoid and bounded).

The hyperplane $H = \{x' \in X : x^*(x') = c\}$ is included in \overline{Y} . Indeed, if $x' \in X \setminus \overline{Y}$, then $x' \in \operatorname{int}(X \setminus Y)$. Since $X \setminus Y \subset \{x'' \in X : x^*(x'') \leq c\}$, it follows that $\operatorname{int}(X \setminus Y) \subset \operatorname{int}\{x'' \in X : x^*(x'') \leq c\} = \{x'' \in X : x^*(x'') < c\}$, so that $x^*(x') < c$. Therefore, $x' \notin H$ showing that $H \subset \overline{Y}$.

By Ascoli's formula for the distance from a point to a hyperplane in a normed space (see [20], p. 24) we have

$$d = d(x, \ \overline{Y}) = d(x, \ \overline{Y}) = \inf\{\|x - y\| : y \in \overline{Y}\} \le \inf\{\|x - y\| : y \in H\} = \|x^*(x) - e\|/\|x^*\| = \sup\{x^*(x') : x' \in X \setminus Y\} - x^*(x).$$

Therefore,

$$\{27\} \qquad d \leq \inf\{\sup\{x^*(x'): x' \in X \setminus Y\} - x^*(x): x^* \in S^*\} = I.$$

12

Denoting by fr Y the boundary of Y, we shall show that

(28)
$$d = \inf\{\|x - y\| : y \in Y\} = \inf\{\|x - x'\| : x' \in \operatorname{fr} Y\}.$$

Put $d' = \inf\{\|x - x'\| : x' \in \text{fr } Y'$. The inclusion $\text{fr } Y \subset \overline{Y} \text{ implies that}$ $d' \ge d(x, \overline{Y}) = d(x, \overline{Y}) = d$. Supposing that d < d', there is an y in Y such that ||x-y|| < d'. Let $t_0 = \inf\{t \in [0, 1]: x + t(y-x) \in Y\}$. Then $x_0 = x + t_0(y - x)$ is a boundary point of Y and $||x - x_0|| = t_0 ||y - x|| \le$ $\le ||y - x|| < d'$, which contradicts the definition of d'. Consequently, d = d' and (28) is proven.

To prove the opposite inequality of (27), let y' be an element of fr $Y = \text{fr}(X \setminus Y)$. By Theorem 1.3, there exists $x^* \in S^*$ such that $x^*(x') \leq$ $\leq x^*(y')$ for all $x' \in X \setminus Y$. It follows that

$$I = \inf \{ \sup \{ y^*(x') : x' \in X \setminus Y \} - y^*(x) : y^* \in S^* \} \leqslant$$

$$\leq \sup\{x^*(x'): x' \in X \setminus Y\} - x^*(x) \leq x^*(y') - x^*(x) \leq x^*(y') + x^*(x) \leq x^*(x) \leq$$

$$\|y' - x\| = \|y' - x\|.$$

From this and (28), one obtains

(29)
$$I \leq \inf\{\|x - y'\| : y' \in \text{fr } Y\} = d.$$

Inequalities (27) and (29) imply that I=d, and Theorem 4.1 is proved.

Like in the preceding sections, we derive from Theorem 4.1 a characterization of projections onto p-caverns. The next corollary is analogous to Theorem 3.1 in [6].

COROLLARY 4.2. Let X be a normed space, let Y be a p-cavern in X. $x \in X \setminus Y$ and $y \in Y$. In order that y be a projection of x onto Y it is necessary and sufficient that $y \in \text{fr } Y$ and there exists a functional $x_0^* \in S^*$ verifying the conditions:

a)
$$\sup\{x_0^*(x'): x' \in X \setminus Y - x_0^*(x) = \inf\{\sup\{x^*(x'): x' \in X \setminus Y\} - x^*(x): x^* \in S^*\};$$
b)
$$x_0^*(y) = \sup\{x_0^*(x'): x' \in X \setminus Y\};$$

b)
$$x_0^*(y) = \sup\{x_0^*(x'): x' \in X \setminus Y\};$$

$$x_0^*(y-x) = \|y-x\|.$$

Proof. Admit that y is a projection of x onto Y. Then $y \in \text{fr } Y =$ = fr $(X \setminus Y)$ and, by Theorem 1.3, there exists $x_0^* \in S^*$ such that $x_0^*(y) =$ $=\sup\{x_0^*(x'): x'\in X\setminus Y\}$ which shows that equality b) is true. Taking into account the duality relation (26), one obtains

$$d = \|y - x\| \geqslant x_0^*(y) - x_0^*(x) = \sup\{x_0^*(x') : x' \in X \setminus Y\} - x_0^*(x) \geqslant$$
$$\geqslant \inf\{\sup\{x^*(x') : x' \in X \setminus Y\} - x^*(x) : x^* \in S^*\} = d,$$

which shows that relations a) and c) are also true.

Conversely, suppose $y \in \text{fr } Y$ and $x_0^* \in S^*$ verifies conditions a), b) and c) from the Corollary 4.2. Appealing again to the duality relation (26), it follows that

$$\|y-x\|=x_0^*(y)-x_0^*(x)=\sup\{x_0^*(x'):\ x'\in X\setminus Y\}-x_0^*(x)=$$

p-CONVEX SETS

$$=\inf\{\sup\{x^*(x'): \ x'\in X \ \backslash \ Y\} \ -\ x^*(x): \ x^*\in S^*\} \ =\ d,$$

showing that y is a projection of x onto Y.

Remark 4.3. By Corollary 4.2, it results that if y is a projection of x onto Y, then there exists a functional $x_0^* \in S^*$ such that the infimum I in the duality relation (26) is attained at x_0^* . The converse of this assertion is not true as was shown in [6], i. e., the existence of a functional x_0^* at which the infimum I in the right side of (26) is attained does not imply the existence of a best approximation element of x in Y. In the same paper an example was given of a cavern Y in l^2 and an element x of l^2 having no best approximation element in Y, and such that the infimum in the right side of (26) is not attained.

REFERENCES

- [11] A Le m a n, A., On some generalizations of convex sets and convex functions. Anal. Numér. Théor. Approx., 14 (1985), 1-6.
- [2] Asplund, E., Chebyshev sets in Hilbert spaces. Trans. Amer. Math. Soc., 144 (1969), 235 - 240.
- [3] Cholewa, P. W., Remarks on the stability of functional equations. Acquationes Math. **27** (1984), 76-86.
- [4] Dunford, N. and Schwartz, J. T., Linear Operators, I. Interscience Publ., New York, 1958.
- [5] Fischer, P. and Slodowski, Z., Christensen zero sets and measurable convex functions. Proc. Amer. Math. Soc., 79 (1980), 449-453.
- Franchetti, C. and Singer, I., Best approximation by elements of caverns in normed linear spaces. Boll. Unione Mat. Ital., Serie V, 17-B (1980), 33-43.
- [7] Garkavi, A. L., Duality theorems for approximation by elements of convex sets (in Russian). Uspehi Mat. Nauk, 16 (1961), 141-145.
- [8] Green, J. W. and Gustin, W., Quasiconvex sets. Canad. J. Math., 2 (1950), 489-507
- [9] Holmes, R. B., Geometric Functional Analysis and Its Applications. Springer-Verlag. New York - Berlin - Heidelberg, 1975.
- [10] Klec, V., Convexity of Chebyshev sets. Math. Ann., 142 (1961), 292-304.
- [11] Klee, V., Remarks on nearest points in normed linear spaces, Proc. Collog. Convexity (Copenhagen 1965), pp. 168-176, Copenhagen, 1966.
- 12 Korneichuk, N. P., Extremal Problems of Approximation Theory (in Russian). Nauka, Moscow, 1976.
- [13] Korneichuk, N. P., Ligun, A. A. and Doronin, V. G., Approximation with Restrictions (in Russian), Naukova Dumka, Kiev, 1982.
- [14] Muntean, I., Support points of p-convex sets, Proc. Colloq. on Approximation and Optimization (University of Cluj-Napoca 1984), pp. 293-302, Cluj-Napoca, 1985.
- [15] Muntean, I., A multiplier rule in p-convex programming. Seminar on Math. Analysis. University of Cluj-Napoca, Preprint No. 7, 149-156 (1985).
- [16] Neumann, J. von, On complete topological spaces, Trans. Amer. Math. Soc., 37 (1935), 1-20.
- [17] Pumplin, D., The Hahn-Banach theorem for totally convex spaces. Demonstratio Math., 18 (1985), 567-588.

- [18] Rubinshtein, G. Sh., Dual extremum problems (in Russian), Dokl. Akad. Nauk. SSSR, 152 (1963), 288-291.
- [19] Schaeffer, H. H., Topological Vector Spaces, Mac Millan, New York-London, 1966.
- [20] Singer, I., Approximation in Normed Spaces by Elements of Linear Subspaces, Editura Academiei, Bucureşti, and Springer-Verlag, Berlin — Heidelberg — New York, 1970.
- [21] Thibault, L., Continuity of measurable convex and biconvex operators, Proc. Amer. Math. Soc., 90 (1984), 281-294.
- [22] To a der, Gh., Some generalizations of the convexity, Proc. Colloq. on Approximation and Optimization (University of Cluj-Napoca, 1984), pp. 329-338, Cluj-Napoca, 1985.

Received 22.VII.1987 University of Cluj-Napoca Faculty of Mathematics and Physics 3400 Clnj-Napoca, Romania

one explicate of a been appropriate and a property of the surface of the surface

Real of a ft Parent

- The state of the s
- uning at the second many way, and the age of the second of the second at the
- [41] Z. Leedardov R. D. A. D. Wenna & et al. information for a complete a Sugarable Party.
- politicarium in Novam controvarium to Locator organization de authoritation for
- come alternative our stresses malifestates of the little to their their
- the almost the state of a supplemental settle. () is a supplemental to the supplemental settle.
- The second of th
- the resident with the residence with the second control with the second man and the second man and
- to trainer of the products of training the materials and to published states of the
 - John Sas Migging of a representation of the Section of the Secti
- [111] B. L. e. S. J. Zementis on marge party in mounce important tree. College-Convexity congenitation, pure 170, 170, 170, 170, 170.
- Marian in the control of the property of the state of the
- normalization of "V" is a contract to the contract of the cont
- [14] A was the are, T., An applity handle of presence are, those highling the Approximation and Optimization (Conversals of Confederation 1984), pp. 261–262, Confederations and
- ind the sector of the spiritual property of the terminal property and the spiritual property of the spiritual property of
- 1961 Scenario and J. in a 'On any green approximate the course state, such as a course of the course
- (17) Protection that will take to be about the content for the content space. The