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I. Introduetion. We consider a system of linear equations, written
in the matrix form

A;’I) = b,

where 4 € (" is a nonsingular matrix with nonzero diagonal entries,
and x, b e (" with x unknown and b lmown. For the numerical solution of
this system we use the accelerated overrelaxation (AOR) method, which
is introduced by Hadjidintos in [6], and which is a two-parameter’s genera-
lization ot the SOR method. Since the AOR method had been introduced,
many properties ax well as numerical results concerning it have been given
by several autors. Numerical examples from [17], [6] show the superiority
of the AOR method. A lot of papers are referred to the linear systems with
maftrix which is strictly diagonally dominant (SDD), irreducible diagonally
dominant (IDD), generalized diagonally dominant (GDD), an M- or an
H-matrix (ef. [17, [6], [T], [9], [10], [11], [12]). In [2], [8] some new
classes of linear systems have been considered. Here, we shall consider the
class of H-matrices, because we had proved in [3] that all of the mentioned
classes are H-matrices. By using a new technique, which is based on a
generalization of Sassenfeld’s criteria, we are going to get an improvement
for the area of convergence of the AOR method for all of the mentioned
classes of matrices. i

From now on, without loss of generality, we can suppose that a; =1,
teN.

Let A =K — I — U be the decomposition of the matrix 4 into
its diagonal, strictly lower and strictly upper triangular parts, respectively,
and let o, s € R,  #.0. The associated AOR method can be written as

g Mo, x* Hdy b= 0,01, a’e cr,

where Moo = (Il — ol) 1 ((1 — @) E 4 (0 — ¢) L+aU),
d = ol — cl)™1h.
Some special cases of this method are: for .w.= ¢ SOR method, for
© = ¢ = 1 Gauss-Seidel, for ¢ =0 JOR and for ¢ =0, ® =1 Jacobi
method. As one can see, the AOR method is an extrapolation of either the
Jacobi method (case o = 0) or the SOR method (case o # 0, where the
extrapolation parameter is /o).
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9. Preliminaries. We shall use the following notations :
N =1{1,2,...,n}, N = N\[{i}, 1eN.

For any matrix 4 = [a;]e C"" (= set of all complex n X n matrices)
and 1€ N, we define

1‘);(1‘1) = E l(l/ij‘l.

jen)

PEFINITION 1. A real square matriz whose off-diagonal elements are
all non-positive ts called L-matriz.

DEFINITION 2. A regular L-matriz A, for which A1 >0 ids called
M-matriz.

Tor any mafrix 4 = [a;;] € 0", we define M(A) = [mi;] € B"" as
follows

mi = lai|, 1 €N, mi; = — laiyl, 1€N, j€ N(4).

DEFINITION 3. A matriv A is called H-matriz iff M(A) is an
M-matriz.

DEFINITION 4. A matrixz A is called generalized diagonally dominant
(GDD) iff there ewists a regular diagonal matriz M, so that AM s SDD.

Tt is easy to sec that the matrix 4 is GDD iff it is an H-matrix.
By using this fact we shall conclude thatit is sufficient to consider only
the class of SDD maftrices.

3. The Convergence of AOR Method

izl u
LoMma 1. Let pi(o) = Y las (11—l olps(a) + Y lai; 1y €N,
i=1 j

j=t+1
p(o) = max p(o). Then for the matric Moo of the AOR method it holds that

| Moollo < 11 — 0] + 10| p(0).
Proof : From the definition of the matrix norm || |l», there exist
a vector y € 0" such that

19 leo =1y | Moollo = 1Moy llo-
We denote z = M,, y. Hence,
(3.1) (E—cL)z:((l—m)E+(m—c)L—{—mU)y.
Now, wo are going to prove that for each ¢ € N it holds that
3.2) 12 — (L — 0)yi| <lo|p(o) and [z < 11— o] + (] py(o).

For ¢+ =1, by using (3.1), we have

p=01—0)y — oY tuy

j=2

and (3.2) holds because of |y:| <1, ¢ €N.
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Suppose that (3.2) holds for ¢ < b — 1L (k=2,...,#n) and prov
that it holds for ¢ = k. From (3.1), we obtain ’ ’ o Sy

H k—1
2y — (1 —o)yy=—0 Y ayy — Y a(oy; + oz — oy))
j=Fk-1 j=1
n k—1
= — o ‘Z;J ag Yy — © Y, a[(L = o) yy -k oo(z = (1 — w) ) /o],
ji=ki1 i=1 ’

and

n

|2y — (1 — o) ¥, < o] Z lag | +

j=kt1
k—1
1ol B lawl (1= o]+ lollz =1 = o) yl/lo)} < o] pulo)
]=
Now it is easy to see that

lzp] < |1 — o] 4[] pyo).

The sggond inequality from (3.2) gives [|2]le < |1 — @] + | @] p(o) and
proof is complete.

CoroLLARY 1.1. If 1 — |o|l; >0, te N, then
| Myl < max (It —o|+(Jo] |L—o|—] 6] |1—0}) Lt [ow)/(L—|o] L),

where I = Py L), w; = P:(U).
Proof : Obviously,

p(o) < (1 — o| + [a(p(0) In + tn,
for m eXN for which we have p(o) = p.(o). Hence,

plo) < miax (1 — o Li+ w)/(1 — | a| 1s).

Now, | Moolle € |1 — o] + o] po) < P
< max (11— of + ([o] 11=s| = [o| f—6] Lo+ ]efu)/(1—|o| I,

which completes the proof.

Corollary 1.1 gives an upper bound (let us denote it by ) for the
spectral rad_ms of the matrix I, ,. So, sufficient conditions for the con-
vergence of AOR method can be obtained from the condition =< 1.
It is elear that the condition

|1 — i o] p(e) <1,

“{hich was obtained in [4], is more general than =<1, but it does not
give a possibility to say (in advance) how to choose the parameters o
and © o that AOR method converges. By solving inequality ¢ < 1 and
by the extrapolation theorem (see [7]), we obfain our area of conver-
gence of the AOR method. '
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TurOREM 2. Let A be a strictly diagonally dominant matric and let
I -+ P(L), wi = Py(U), ie N. Then AOR method converges for:

() 0 < o <2/(L4 p(My, (M(A))) = :5,0<0<2a/(i+p(Mss))=:7 oF
(#) 0 <o<l, —minl — I, —w)/2]; < o< mi:n (1 - I; — w)f2L: or

(1) 1 <o <2 —max 2u;/(1 + v, — L)) = : ¢,
max {0, max ((o(l + I; 4+ w) — 2)/(2(e — 1) [}))} < o <
<min@ — ol — I; + u))/2L; or
() 1 < o <2/ + max (I + w)) = 4
max (o(1 -+ I; + w) — 2)/2L;, < ¢ < 0.
Proof : It is easy to verify that for each o, which satisfies one of the

conditions (4%) —(@v), we have

1 —|olli >0,1€N,

(1) Since A is SDD matrix, then M(A) is an M-matrix, and from [16] it
follows that for 0 < ¢ < s it holds that
P(M,q) < 1.
()] o (O] ’
It is known that for ¢ # 0, M, . = (]_ — ) 4+ 7;- M, .
02

If 0 < o/c < r, by using the Extrapolation theorem, [7], we conclude
that p(M,.) < 1. _ | ‘
(i) TF 0 < o<1, it holds |o||l — o] —[c][l —0]=0—06 and

1 — o4 (o — o) I; + 0w <1 — ol;, 1 €N because of
— ol —I; —w) <0, teN.
If ¢ >1, we have |o||1 — o] —i6||l — o] =260 — ¢ — o and
o < (L —wu; + I1)/21;
=2¢l; <1 —u; + 1;
=200 [; — 0 -+ ou; — ol <0 :
=1 —o+4 (200 — 0 — o) [; +0u; <1 — ol;, 1€N,

and from Corollary 1.1 we obtain p(M,,.) < 1.
If 6 < 0, we have |0| |1 — o] — |||l — 0] =06+ © — 200 anl

6 > — (1 — Iy — w)/21;
= —2c0 [; <w — ol; — oy,

=1 —04 (640 —200) I[; + ou; <1 +'cl;, 1 €N.

drix, i.e. GDD matrix.
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Trom Corollary 1.1 it holds that p(M,.) < 1.
4(117)  and (v) can be proved similarly, by using the same C ‘orollary.
Detailed analysis shows that the area of convergence for the clags
of SDD matrices, given in [12], is always smaller than this one. Here we
ilustrate this fact by the following example.
Hzample 1. The area of convergence for o and o obtained by Theo-

rem 2 in case when
— 25
A 1 0.0625 8
—0.25 1

is

(1) 0<0<<16/9, 0 <o <20/l -+ p(Ms,,)) or

() 0 <o <1, —1.5 < ¢ < 2.5 or

(1) 1 <o <32/17, 2.5 — 1.5/(0 —1) < ¢ < (8 — 3w)/2 or
() 1 <o <16, (Bo —8)/2 < 6 < 0.

[

2
1.0

-15 0 171 25 6
Tig. 1

tal
We give a geometric interpretation of Theorem 2 for this example
(fig. 1). We can see that the area of convergence obtained here is

: larger
that the onc from Theorem 4 from [12] (fig. 2).
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Now, we can use the result of Theorem

2 in order to improve the
area of convergence for the parameter

8 o and o in case when A is an H-ma-
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Sinee  p(My (M(A))) = p(My,(M(AW))) and - _p(ﬂqu(o(A)) =
= P( M, ofAW)) for aregular matrix IV, we obtain the following theorem.

TiioreM 3. If A is an H-matriz' (i.e. GDD) and the parameters o
and o are chosen as itn Theorem 2, where 1 P= Po(LWY and w; = Pi(UW),

i €N, then p(M,.(4d)) <1.

COROLLARY 51 Tet A be an T1DD or an M-matrix or a matriz whose

elements satisfy at least one of the following conditions :
(1) 1 >Py(4),ieN (SDD),
(it) 1 > Pia(A), i€ N, for some o € [0, 1],
(755) 1 > PHA) Q1 *(A), i€ N, for some a € [0, 1],
(iv) 1 >Pid)PyA), ieN, jeN@,
(0) 1 > PXA) Q" PiA) Q7 (4), i€ N, je N,
Jor some o €0, 1],
(i)  For each © €N it holds that
1 >l);(A) or
1 4 card (J) > Qi(A) + Y, @,(4), where J : = feN:1 <Q4),
T
(vit) 1 >min (Pi(4), QX(4), 1 €N and
2 > I)I(A) + PJ(A)7 € D‘Ta je N“))
(viti) 1 > Q" B), 1€ N and
p > %, Pid), t,€0,, for some pe W,
jetp
(42) There ewists 1€ N such that
1 — PyA) 4 laul) > PdA)| asely jeN(),
where Qu(4) =% Hayl,
JENI)
PidA) = aPy(A) + (1 — @) @A), QF(A) = max [ay],
Qi(A) = max Y lajl,

€0, ge 1

r € N and 0, is the set of all choices t, = {is, - . ., &} of different indices from N'.

If o and o are as tn Theorem 3, then AOR method converges.

Txample 1 shows that the area of convergence ‘obtair}ed by Qoro}-
lary 3.1 is still larger that the one from Theorem 8 from [12] (which 1%

related only to the class of M-matrices).
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