MATHEMATICA — REVUT I’ANALYSE NUMERIQUE
LET DE THEORIE DE L’APPRONIMATION

L’ANALYSE NUMERIQUE ET LA THEORIE DE L’APPROXIMATION
Tome 16, 52,1987, pp. 117—126

THEOREM OF MOTZKIN'S ALTERNATIVE
FOR NONHOMOGENEOUS COMPLEX LINEAR
EQUATIONS AND INLQUALITIES

DOREL I, DUCA
(Cluj-Napoca)

Abstraet. The classical theorems of the alternative of Motzkin,
Gordan and others are extended to nonhomogeneous complex linear
cquations and inequalities.

0. Introdnetion. The theorems of the alternative play an important
role in establishing of necessary conditions for optimal solutions of a mathe-
matical programming problem and necessary conditions for efficient solu-
tions of a vectorial programming problem.

The extension of mathematical programming theory to complex
space necessarily request the extension of theorems of the alternative to
complex space. To show that the duality theory of linear programining
in real space also holds in complex space, Ben-Israel [2] has proved the
following extension of Farkas theorem to complex space : '

Tirorem 0. Let A € 0", a €™ and let S 'be a polyhedral cone
in O, Then the system

Az = a -
z en,
is consistent, if and only of

Afp e 8* implies Reé {a, v> = 0.

Equivalent formulations of theorem 0 have been given by several
authors, among which we should mention : A. Ben-Tsrael |37, 3. Mond and
M. A. Hanson [22], [23], B. Mond [217], R. N. Kaul [18], D. 1. Duca [L1],
[13], [14], L. M. Stancu-Minasian and D. I. Duca |25).

In 1969, A. Ben-Israel [3] extended the theorem of the alternative
ol Motzkin [24] for homogeneous lincar eqoations and inequalities to
complex space.

In this paper an extension of the Motzkin theorem of the alternative
for nonhomogeneous linear equations and inequalities to complex space
is given.
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1. Notations and preliminaries. Let ¢"(R") denote the n-dimensgional
complex (rveal) veetor space, R = {x e R":x = () with a; = 0 for
all j e{1,...,n}! the non-negative orthant of R", and.  gm=(Rm*") the
set of m x n complex (real) matrices. If A is a matrix or a vector, then
AT, A, A" denotes its transpose, complex conjugate and con jugate trans-
pose respectively.

For z = (2;) eC":

Re z = (Re z;) € " denotes the real part of z,

Im z = (Im z;) € B* denotes the imaginary part of z,

arg # — (arg z;) denotes the argument of z,

lz| = (|z;]) € B denotes the module of z.

For any @ = (a;), y = (y;) € R*, we consider :

w <y (v <y iff /<y (z, <y, for all j e, ..., n},
x <y ift 2 £y and x # y.

Tor z, w € (" : (z, w)> = w"z denotes the inner product of 2 and .
A nonempty set §in C"'is a: _
(3) comvex cone it 8 + S = § and if r € R, implies that »8 < §;
(1) pointed convexr cone it (i) and S n (—8) = {0t;
(118) polyhedral cone it it is a finite intersection of closed half-space in C",
each containing 0 in its boundary.
Tor any nonempty set & in O, let: :
S* — {p e(":z €8 implies Re (z, wy = 0} the polar of .8, eg. [2] and
int §% = {v e (" :z €S \_{0} implies Re (z, v) >0} the interior of S*.
Tt § is a nonempty set in 0%, then S* is a closed convex cone. Since S*
coincides with the polar of the smallest closed convex Cone containing S,
e.z. [2], it sutfices to study polars of closed convex cones.
It § is a closed convex cone in €% then :
(4) int S* iy nonempty if and only if S is pointed;
(1) int S is nonempty if and only if S* is pointed ;
(#7) int § = {v eS:e €8x\ {0} implies Re<lv, 2> > 0}.
Tt S and T are polyhedral cones in ¢" and €™ vespectively, then :
(1) 8§ x T is a polyhedral cone in "+
(17) (S x 1)* = 8% x T*

2. Results, The main result is :

TuworuM 1. Let A, e, A, eCm* B eCr*", B, eCr* D e
e, D, eCt qaeC beC”, deC. Let T be a polyhedral cone n
O™ with nonempty nterior, let M be a polyhedral cone in ¢ and let S
be a polyhedral cone in C".

Then, the system

Az + Aw —a €int T
(1) Bz+ Bw —be M

Dz -+ Daw — d

z e,
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s consistent if and only if the systems :
At + B + Dff ve §*
At 4+ BYw + Dilv = 0

(2) 1 Re [<a, 1) + by ud + {d,»>] £ 0
— 1 eT*\_ {0}
— e M*,

and

(At - Bfw + Div € §*

At 4 Biu - Difv =0

Re [Ka, ) + by, u)y + {d, vD] <0
— i e*

— u e M*,

«are both inconsistent. '

Proof. a) Suppose that system (1) is consistent. Then system (2)
«cannot have solutions, for then 0 < Re [(4,2 4 4w — a, — 1> 4-
4+ (B2 + By — b, —uy + (D2 + Dyw —d, —v> + At + B u 4
| Di'v, &) + CAFt 4 Blw - Div, wd] = Re [, 1y + <by u) 4 <d, v)] <
< 0, by (1), (2) and the definitions of 7%, M*, §* and int 7. Neither

PN
o

«can system (3) have solutions, for then 0 = Re [(dw 4+ Ayw — a, —1) +

+ Bz + Bao — b, y-udy + Dz + Dyw —d, —vy + A"t + Bi'w +
+ Div, 2y + <At + Biu - Dilv, wy] = Re [<a, 1) 4 <b, uy + {d, v3] <
< 0, by (1), (3) and the definitions of I, M* and S*,

b) Suppose now that systems (2) and (3) are inconsistent. Since
int T # O, it follows that there exists an b eint 7. Now, by the inconsis-
teney of (2), we deduce
A B DI
: Al BY DY 1 )
| —a™ —b" —d" w | € 8% X [0} X(Ry-+iR) x T*x M* implics t = 0.
| —1 0o 0 O
0 -1 0

Since ¢ = 0 implies Re {({g {2 |u |> 2 0, it follows {hat

AT BY DI
Ay BY DY |y
Calt b gt | | |€ 8% X {0} X (R4 R) X T* X M*

I o o |l "1
R} implies Re fo [+ |u|> 2 0.
0 _I O 0 i P
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By theorem 0, this is equivalent to : the system

is consistent. Since (8* x {0} X (R, +iR) X T% x M** = § x 0% x
X Iy x T x M, from (4 ), we deduce that the qvatem

Az +Aw —ar —x=h
Bz + Baw —br —y =20
Dz Dyaw —dr =0

zel
|4 & o*
re R,
rxel
yeM,

is consistent. System (b) gives

Az 4+ Adw —ar =z hel - int T =int T
Bz -+ Baw —br —ye M

V\ Dz 4 Dy — dr =0

zelN

rell,,

bhence there exists [gn] e 0" x 0% x O so that

A2 + A — et eint T
Bzt + Bl — brte M
Dt ++ Dt — drt =0
sel

ek,

Ay Ay e =T V0T 3
w {
B, B, —b o —1|lr|=]o
D, D, —d 0 0 ;’ 0
z \
w _
p | €(8% x {0} X (Ry 4+ iR) x T* x M¥)*,
y

pim—
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by I 1 # 0, then from (6) it follows that

o] =i ]
w (1 /1)t
(1) is consistent.

by) If #' = 0, then from (6) we deduce that

At + Aywteint T

C* is a solution to system (1), henee system

(7 B2+ Buw'e M
D2t 4 Dot = 0
#eld.

On the other hand, by the inconsistency of system (3) we have
Af B D¥

i pr ooyl . L “1 1
‘] z ’(’)1 (’) 2w | € 8F {0} X T x M* implies Re ({3 |» [4 > 0.
*d - mdio | v d v

By theorem 0, this is equivalent to : the system

A4, 4, —T 01} ® a
B, B, 0 —If|V=p
LD Dk e 0 ol d
Y
]
[ =
[ w €(S* x {0} x T* x M*)*
@
LLY

2
2] e 0" x OF so that

18 consistent. Then there exists [
w

App? + Ap? — el

(8) By + Byw: —be M =
Dy2* + Dyw* = d
ztef.

Let us note now z =24 2*eC" and w = w' -- w?> e C*. Then
Az 4 dyw — a = (A0 + Ay W) (42?2 + Agw? —a) eint T+ T'=1int 7T,
Bz - Bw — b = (B! -+ Buaw') + (Bt + Bw? —b) e M + M = M,
Dz + Dzw = (D2t + I)Zwl) + (D22 4 Dyw?) =04 d =4d,
g=g' -22eS +8 =48
by (7) and (8). Hence, systun (1) is consistent. This completes the proof. |
Related results are :
TuporEM 2. Let A, e O™, A,eO"* B e(r* B,e(Or
DyeCi*r D, e Cixk Jet T be a ]oolz/hedmt cone tn O” wuh nonemth mte—
rior, let M be a polﬂwdml cone in C” and let S be a polyhedral cone in O
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Then, the system:
Ag + Agweint T
B+ Bawe M
Dz Dyw =0
z N,

is consistent, if and only if the system

A 4+ Biw -+ Di'veS*
Al - Bifu + Dy =0
— te T*N {0}

— w e M*,

18 1nconsistent.

Proof. Apply theorem 1 with A=Ay, Ay =4y By:= By,
By:= By, Dy =Dy, Dy:= Dy T:=1T, M:=M, S:= S, a: =
—0el", b:=0e0" d:=0¢eC" Since, in this case, system (3) is
inconsistent (Re [{a, ) + (B, u) + {d, v)] = 0), it follows that system (1)
is consistent if and only if system (2) is inconsistent, which completes the
present proof. @

Tarmorum 3. Let A, e R, A, e R™ B e R, B, € RF*Y,
D, e Ri*", Dye R ueR", beR? de R Then the system

A+ Agy —a >0
B+ By —b =20
Dy - Dyy = d :
a = 0,
15 consistent, if and only tf the systems _ _
ATt 4+ BTu + Div 2 0 ATt 4 Bfu 4 Div 2 0
ATt 4 Bfw ++ Djv =0 At + Biw + Div =0
1 <a, £ 4 by uy +-<d, ) =0 and La, 1y 4+ by u) + dy vy <0
<0, | <0,
u =0, w <0,

are both tnconsistent. _
Proof. Take everything in theorem 1 to be real with 7' : = R
M :=R2, and S : = I} :

3. Speeial eases. Theorems 1 and 2 yield, as special cases, a number
of known results.

COROLLARY 1 (Duca [14]). ‘Let A € ot Be P, De C’”.“", €
eCmbel?,deClet Tbea polyhedrat cone in C" with nonemptly intervor,

7 COMPLEX LINEAR INEQUALITIES 123

let M be a polyhedral cone in C? and let S be a polyhedral cone in C*. Thew
the system
' Az —aeint T
Bz —beM
Dz =d
zefl,

is consistent, if and only if the systems

AH 4 By 4 D" e S* (A"t -+ By D" e 8*

Re[<a, ty + <b, uy + <d, v)]1=0 and Re[da, ) + <byud+Ld, 03] <O
— e T\ {0} —teT*

—we M*, — u e M¥,

are both tnconsistent.

Proof. Apply theorem 1 with 4;: = A, B, :=DB, D :
Ay =00k By : =0eCP D, =00t a:=a, b:
d:=d, T :=1T, M :=M,8:=05 1

This result is an extension of the Motzkin theorem to nonhomoge-
neous complex linear equations and inequalities.

COROLLARY 2 (Ben-Israel [3]). Let A e ", BeCr*, DeCr,
let T be a polyhedral cone in C™ with nonempty interior, let M be a poly-
hedral cone in OF and let S be a polyhedral cone in C". Then the system :

Azeint T

Bze M
Dz =0
zeN,

”

b,

is consistent, if and only af the system
ATt + By - D" e S*
— e T\ {0}
— u € M*,

s tnconsisient.
Proof. Apply theorem 2 with A=A, 4, : =0e0"* B : =B,
B,:=0¢eCrt Dy:—=D, Dy: =0eC T: =T, M:=M,8:=8.1

2

This result is an extension of the Motzkin theorem to complex
space.
COROLLARY 3 (Mond and Hanson [227). Let A e ¢, B e b,

De 0 and a€ R, with « = —;C e, where ¢=(1,...,1)" € R". Then
the system
Re (42) >0

larg(Bz)| = «
Dz =0,
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18 consistent, if and only if the system
A"t + B 4 Dy =0
Imt =0
Ret >0

T
larg u| = -é—-e — o

18 tneonsistent.

Proof. Apply theorem 2 with 4, : = A, A, : =0e 0"} B : =D,

By, :=0eC D : =D, D, : =0eCr<}, T : =R+ iR S := ("
M= juel :largu| = . Al
JOROLLARY 4 (Duca [13]). Let B, € Ctx", B, e C?** D, e (**,

D, e Cr*t heC”, deC let M be a polyhedral cone m C" and let S be a
pol‘/hedml cone tn O l’hen the system

Bz 4+ By —be M
Dz + Dy =d
zel,
48 consistent, if and only if the system
Biw - D' € §*
Biw |- Div =0

Re [¢b, w) |- <dy vD] < 0
—u e M*,

18 tnconsistent.

Pmof Apply theorem 1 with 4, : =0e 0", A, : =0e(r*,
B, : = B, Bz = B,, J)1 =D, D, Hl) 7 7060"' b =10,
d = d, T O’” M= J[ S i — 8 Sinee 1% — {0}, it follows that
svstem (2) is in(:onsistent .TL ) fO} = ). Then system (1) is consistent
if and only if system (3) is inconsistent. This completes the proof. §

Taking B, : =00 By, : =0 0" D, : =00 b : =0¢
e 07 and M : = C7”in corollary 4 we get theorem 0, the extension to com-
plex space of FFarkas theorem given by Ben-Isracl [27.

Taking S : ={ze(: |Jarg 2] £ «} where oec R, .

o = cy, ¢
2

= (1, ..., 1) e R* in theorem 0 gives the extension to complex space of
Irarkas theorem given by chm\on [19].

Let A e0> Be(x" ae( fe R and let I and 8 be polvhbdml
cones in ¢ and O" respectively. It

{ ok ,
B — [f ] EQUHY* Boi — 0 e QUK D s — 0 € U7 Dy == 0 € (13K,

B
d:=0e0, M :=1Lx & § : =48, corollary 4 reduces to the exten-
sion to complex space of Farkas theorem given by Stancu-Minasian and
Duca [25].
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It B, : =0eC’*" D, :=0¢C"" =00 d :=0e
corollary 4 reduces {o th(, U{termlon to Complex space of ¥ fm*l(as thLoqu
given by Mond [21].

The other theorems of the alternative similarly follow from the above
theorems.

COROLLARY 5 (Motzkin [24]). Let A, € R™*", A, € R™*¥,
B, e Rrxt Dye R Dy e Rk Then the system

Bl c R[)xu,

Ao+ Ay >0
Bz + By =2 0
Dz + Dgy =
x = O,

18 consistent, if and only if the system

ATt - Bfu + Dfo 20
Adt 4 Biw 4+ Div =0
t =0

@ = 0,

48 ineonsistent.
Proof. Take everything in theorem 2 to be real with 7' : = R,
M = R? and § : = I,
Taking A, : = 0e R"** 13, : =0 e #*" B, : = 0¢RF*k D,
=0 e R D, : = 0 e R*"in covollary 5 gives the transposition theorem
of Gordan [16]. |

4. Remarks

(¢) Theorem 1 cannot be extended fto general
closed convex cones (see [37]).

(%) Theorems 0, 1, 2 are equivalent. Tn applications sometimes one,
sometimes the other is preferred.

(iwl) Tor applications of the theorems of the alternative in complex
space, see, for (’Xamplt‘ CLty, 121, 161, 17 185, (91, [10], (1], [12]5
[L7], [19], (217, [22], [23], [25].

(nonpolyhedral)
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