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In the present paper we introduce the so-called pseudo-geometric
inequality which represents a generalization of the abstract geometric
inequality introduced by Duffin, Peterson and Zener in [3]. Then we
construct the pseudo-geometric inequalities (2) and (9) (Theorems 1
and 3) and we demonstrate that these inequalities are not abstract geome-
tric incequalities (Theorems 2 and 4). From theorems 2 and 4, we see
that the duality theory developed in [1] is not a particular case of the
duality theory developed in [3].

DEFINITION 1. An inequality s said to be a pseudo-geometric ine-
quality if it satisfies the following postulates :

(1) The tnequalily is « scalar product tnequality of the form :

n
. Y 2 < NG — F(y),

i=1
ahich is valid for each vector @ = (@, . .., ®4) in an open conver set C <R
and each vector 4 = (g, -+, Ya) 0 @ cone I < R*, where ¥y 2: K — R

and G : ¢ — R are funclions.

(1) The function X is nonnegative on the cone K.

(331) The function G is differentiable on the open convex set C.

In [3] Duffin, Peterson and Zener introduced the so-called abstract
geometric inequality. -

DEFINTTION 2. An inequality is said 1o be an abstract geometric
nequality if 1t satisfies the following postulades : ]

(3) The inequality is a scalar product inequality of the form (1), which
is valid for each vector & == (&y, ..., Tx) Pn_an open convex set ¢ < R” and
each wector y = (Yy, -+, Yu) W a cone I{ = R, where F, )\: K - R
and G : C = R are functions.

(#4) For any vector & in C there 15 a monzero vector 2 in IC such that
inequality (1) becomes an equality for each vector y on the ray emanating
from the origin through the point z, i.e. '

S sy = NG(x) — F(y), for all y = oz, « > 0.

i=1
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(#12) The function A ts nonnegative on the cone K.

(iv) The function G is differentiable on the open convex set C.

From definitions 1 and 2 we see that the abstract geometric inequa-
lity is a pseudo-gcometric inequality. The converse is not true, as one can
see from the following theorems. The pseudo-geometric inequality repre-
sents, thus, a generalization of the abstract geometric inequality.

TreoreM 1. Suppose that x = (ay, ..., @) 18 an  arbitrary vector

wm B and let y = (yy, . ., Yu) be an arbitrary vector tn R" with non-negalive

components. These two vectors satisfly the tnequality

" " n "
(2) Yooyes Yy yiny — Yoy,
i=1 i=1 i=1 =1
with the understanding that y; In y; is taken to be zero when Ui b8 zero.
Moreover, this tnequality becomes an equality if and only if

(3) el =y t=1,...,n.

Proof. Inequality (2) can be derived in several ways. The derivation
given here depends on the obvious faet that the exponential funetion
f: " — B defined by

W :
Hx) =% " Jor cach v = (2, ..., &) in R,

i=1

is strictly convex on the R". Thus,

n n W
Z ez[ + E 62"( ¥ pl=— Zi) < ): 6"”!‘}
a=1

i=1 =1

or, equivalently,

(4) Y ML v —2) < 6™
= i=1

for arbifrary vectors x = (#, ..., x) and 2 = (2, ..., 2,) in R* with
equality holding if and only if » = ».

We choose an arbitrary vector y = (yy, ..., %) in R® with positive
components. Sinee 2 = (2, ..., 2,) is arbitrary and y; for ¢ =1, ...,»
is positive, we can choose z; =1n g, € =1, ..., ». It then results from
inequality (4) that

Yl 4w —Ingy) < Y e",

=1
or
» 7 5 o
Yimy < Y, e Y yildn yi — Y v
=1 i=1 i=1 i=1

‘This inequality beeotaes an equality if and only if

ge=Inwy, T =1,...,5
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or
=y, b =1,...,n.
This proves theorem 1 when all components of y are positive.
If all eomponents of y are zero, using ylny; =0 when y; =0,
1 =1, ...,n, inequality (2) becomes
n
K
0 <Y e,
i=1
true, since ¢" iy positive for all ¢ = 1, ..., ». The incquality (2) is a striet
ineguality when all components of y are zero and this proves theorem 1,
beeause there is no veetor @ = (ay, ..., ) in " such that

i =y, for 1 =1, ...,n.

The remaining ease occurs when some of the components of y are
positive and some are zero. Without loss of generality, we can assume that

(h) yi >0 fori=1,...,5

(6) i =0 for e =8-41,...,a,

where 1 < ¢ << n. From what has already been proved we know that
S s S s
Yoy < Y et N ylny — Y v
i=1 i=1 =1 i=1

or, using (6) and y;n y; = 0 when y, = 0,

1 R
Vayo < Y e+ Y yilnyg — Y v

i=1 =l i=1 i=1

o8

Sinee ¢ ig positive for ¢ == s 4 1, ..., n, we infer that

» ¢ ! .
Y vy <Y €+ Y yny — ¥y
i=1 sl Lk =

Thus, inequality (2) is & strict inequality when some of the components:
of y are positive and some are zero. The proof of theorem 1 is now com-
plete, beeanse there is no veetor & = (a4, ..., @) in B* such that

et =y, for ¢ =1, ..., n.

THROREM 2. Fuequolity (2) 18 « psendo-geometric tnequality, but
i ot an abstract geometric tneguality.

Proof. Inequality (2) is a sealar produet inequality of the form (1),
it in definition 1 we take € = R", the cone K = R :— the non-negativs
orthant of R* and the funetions ¥, A: K —» R and G : € — R defined by
1 ¥4

Fy) =Yy — Nudny, yel

=3 i=1

My) =, y ek,
G(x) =Y ¢, xe€.

=1
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Bvidently, in this case, the postulates (2), (¥3) and (i) of detinition 1 are
fulfilled and consequently inequality (2) is a pseudo-geometric inequality.
We shall show that the postulate (¢7) of definition 2 is not fulfilled. We
shall show this by contradiction. Assume, consequently, that for each
vector @ = (ay, ..., @) in C, there exists a nonzero veetor 2z in i so that

"

Sy =Y 4+ Yyiny — Yy, for all y = a2, o > 0.

i=1 i=1 i=1 =1

Tt all components of z are positive, then for the vectors a and
Yyl = a2 respectively x and y% = ay2, where o, >0 and «, >0 with
a; # oy, iNequality (2) becomes an equality. By theorem 1, the equalivy
in (2) holds if and only if

(7) e =yl =@z, for i =1,...,n
respectively
(8) "=yt = gz, for T =1, ..., 0.

Tt then results from (7) and (8) that o, = a,, contradicting the hypothesis
that ¢, # a, and the theorem is proved when all componcnts of z are
positive. The remaining case occurs when some of the components of 2
are positive and some are zero. It then results from the proof of theorem 1
that for the vectors x and y = oz for all « = 0, inequality (2) is astrict
inequality, contradicting the hypothesis that inequality. (2) becomes an
equality for a and y = «z for all « = 0. The proof of. theorem 2 is now
complete.

The following theorem gives a pscudo-geometric inequality which
generalizes pseudo-geometric inequality (2).

TunoreM 3. Let @ = (x4, « .., @) an arbitrary vector tn R" and let

Y = Yy, « - -y Yn) an arbitrary vector in IR* with non-negative components.
Then

i=1 i=1 i=1 i=1

3, o< (Z Gx"')(g”’i)*z%l“%*
(9) | B
_(Z ]/i)hl (Z ]/z) — X Yiy

. \i=t1 - =1 =1 .

with the wnderstanding that y; In y, = 0 if g/‘,-‘ — 0. ‘ _
Moreover this inequality becomes an equaltty of and only if

{10) - " ( Z ;lj:') =y, for all j =1, ...,
t=1

The proof is analogous to the proof of theorem 1. The function
f: R* — R defined by

i3
Nlw) =%, " for cach @ = (@, ..., ax) in I

1=1
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is strietly convex on R*. Thus, (4) for arbitrary vectors @ = (@gy « vy Xn)
and z = (2, . - -, 2) in R* with equality holding if and only if # = 2. We
choose an arbitrary veetor y = (¥y, - -, ¥a) in R" with positive compo-
nents. Sinee z = (2, «+., 22) i arbitravy and y;for i=1, ..., n positive,
we can choose

g =In—2 forall j=1,...,n.

3 Y
i=1
It then results from inequality (4) that

”]_[12 Yi (1 +a —Iny, +In Z yl-)J <y e,
2,,11. i=1 ’ i i=1 i=1

i=1

or, equivalently,
¥ 2y < (2} ak )(E yi)+ Yydny, — Y yiIn (Z 1/:) — ¥ ¥
i=1 i=1 i=1 i=1 Z =1 i=1 i=1

n

because ¥ y; > 0. This inequality becomes an equality if and only if

=1
o Y . . .
#;=In ——for all j =1,...,n,
M ¥
i=1

or

n

el ( ¥ ;z/,i) =y, forall j =1,...,n.
1=1

Thig proves theorem 3 when all components of y are positive.

If all components of y are zero, inequality (9) is satisfied, because
both sides of it are zero. The remaining case occurs when some of the
components of y are positive and some are zero. Without loss of generality
we assune that (5) and (6) are hold. IFrom what has already been proved,
we know that

(11) } @S (E i’/i)( Y ot )+ Y yilny — Z yiln ( Y .7/:‘) - Z Yiy
1=1 i=1 =1 =1 i=1 i=1 f=1
or, using (6) and y;Iny; =0 when y;, =0 forv=1,...,n,

(12) Y my < (Z ;yi)(z e“f)%- Yylny, — Y ydn ( pX ,1/,,-,) - Yy
i=1

=1 i=1 i=1 i=1 =1 i=1
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H
Since e't is positive and ¥} y; > 0, we infer that

(=1

(13) (;{ ")(; e) < (; v)(}; 6)

From (12) and (13) we obtain

" " ” 113 l ” 112
Y @ <(Z ;?/,-)(L‘ el )+ Yy luye — Y v 1o ( Y, y/f) -~ Y v
=] i=1 =1 i=1 =1 =1 i=1

Thus, inequality (9) is a striet inequality when some of the components
of i are positive and some arve zero. The proof of theorem 1is now completo,
because there is no vector @ = (&, ..., a,) in R" such that

e (): y;) =y; tor all j =1, ..., %

=1

TuroRmys 4. Inequality (9) s a pseudo-geometric tnequality, bul
it 18 nol an abstract geometric inequality.
The proof is given in [2].
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