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The aim of the present work iy to give the foundations of a new
numerical technique — a Complex Variable Boundary Element Method —
in determining holomorphic functions fulfilling some given conditions rela-
ted o the conerete problems of plane hydrodynamies.

It is well known that the main step of a BEM consists in the con-
struction of an integral representation joint to the boundary problem
and of the eorresponding integral equation on {the boundary. But if the
boundary problem is formulated in the language of an unknown holomor-
phie Tunction, the direet use of the Cauchy formula gives immediately an
integral 1op1e\enmlwn attached to the (,ormderod boundary problem
w]nch, in addition, leads automaltically to an integral equation — with

‘auchy singularity — on the l)ound(uy.

Moreover, using a certain system of interpolating functions of the
unknown function, the solving of the boundary integral equation could
be performed without any approximation of the boundary or any nume-
rical gquadrature.

Let f(z) be an holomorphic function into the simple connected
domain D the outside ot a vectifiable Jordan curve ¢. 1t is assuimed that
f(2) is continuous on € where it is known cither its real or its imaginary
part or a combination of the two.

: a, . .
Let f(2) = a i 4 =% 4 ... be the development of the
0 - !
2
considered function in ﬂl(, neighbourhood of infinity. Then the Cauchy”
formula for f(2) and the d()m(mn DUC could be writben as is known,

, 1 { AL o
f(fd) = E’;ﬂi- S %;R_:)z (1C -l* oy z el

®
C

This formula, which is in fact the integral representation attached
to the proposed boundary problem, allows us to determine f(z) once the
values of f(£) on the boundary € are known, But these values of A0 on €
also satisty a singular mtegl(ﬂ equation obtained — performing z — % ¢ @
in the above formula — and which represents the boundary integral equa-
tion of the procedure (CVBEM)., Unfortunately, the problem of solving
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this intégral equation even numerically is usually a very difficult one. In
what follows, we shall try to overpass the shortcomings connected with
this equation and to include all the data of our problem in the algorithm
of caleulus i.e. the values of Im f(Z) or of Re f({) or their combination.

Let us consider a set of nodal points z,, 21, #gy - -+, 2 (2g = 24) 00 O,
disposed counterclockwise separating the curve Cinto boundary elements
C; (j =1, n), where O, is the simple arc linking the points 2;_, and z;.
Let now the following approximation f({) of the unknown function f({)
be defined by

(0 = Z £,1(%), where f; = f(z;). and the functions L) are the inter-
j=1

polating Lagrange functions constructed on cach are respectively,

Le. ([2], [3]),

IO =1 C—=m o renn
Feal L it1

Zj — %1

_ 0 otherwise
We then get for the above Cauchy integral — up to the additional

constant a, — the approximation f*(z) = Y}, f,]jj(z), where

; =1
e 1 [ L _
Lge = b\
2mi q—
2
C
SLib 1_( Bl 2ladpy B TR +__Z Ul et W Bj+1
2mi\ 2 — 2, A | Bj — Rj+1 Zp = %it1

and where one chooses the principal determination for the complex
logarithm. :
Let us now suppose that the function f*(z) is evaluated in all the
— n ~ —_—
nodal points #i(k = 1, n) ie. f¥z) = Y, filidz), k= 1, n. Considering
1 : | 3 v - - .- ]=1 .
then an approximation of the equality just written, precisely

n ——
f;(-(’lbk + i'U/i-) = Z _ijj,.., k— 1, 1,
i=1
where L. = L(z) = My + iN,;, we are led to the following real system
of 2»n equations in 2% unkpowns .

i

y H o
Uy : Z ﬂ’[,,.ﬂcj —. E N},-*j/vj '

j=1 i=1

" » q
cop =Y, Mo+ Y, Nagw,
= j=1" & =17
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By solving this system within the data of the boundary problein, we get
the looked for approximation f(¢) of the function (¢ and, implicitly, via
Cauchy’s formula, the solution of the proposed boundary problem in all
the points of the domain D.

Concerning the coefficients L,;, for k # j they could be directly cal-
culated from the expression of 1,(2) using the equality lim(z—z,) X

z—dp
In(z — #,) = 0 in the case of k =j — 1 or k =j 4 1. For k = j, a8 we
have [2], [3] '

Te) = L{_ . Pl NS PO L k£ BT

2mi | & — & 0 R T &
2 — 2 o2 — 7 2 — %y
+ J 1n J+1 7|* ln J4+1 } ,
2 — %4 2 — 2 2 — Zj_q
L T . 1 Zj*.z’j.;l A . i i )
we oel immediately [;; = ————— In | —=——"- ), where one talkes the same
o 1 A y
2mi %) T Ria

principal determination for logarithra.

We note that the solving of the above problem by BEM with com-
plex variables (CVBEM) did not need any approximation of the curve C
or any numerical quadrature formula. The only approximation used was
that connected with the interpolation of the function in the points of
the boundary. |

Let us now suppose that the Jordan rectifiable curve ¢ has in 2z, e C
an angular point, precisely the counterclockwise oriented angle of semi-
tangents, in this point being = — um with —1 < u =< 0. It is known that
the Cauchy integral still exists in that case and the behaviour of the func-
tion f(2) in the neighbourhood of the angular point z, will be given by

1

f(2) — f(zp) = (2 — 2) 7% I(2), where h(zp) # 0y which ~implies for the
[

I d . ] i 22 | . . .
derivative lf a Dehaviour of the type 0 [(z — &)t "], le. this deri-
az ) -

rative bDecomes unbounded in z, for —1 < w < 0.

_ Tn the event of using the BEM in the variant ¢V one must take
into account the existence of this singularity in z,. More precisely, the
“piecewise” interpolation has to mateh with the behaviour in V(z,) of the
function f(z). To put it briefly, in the neighbourhood of a nodal singular
point z, which is considered to belong to both €, and €',¢,, we-shall inter-
polate the lunction f() by [3] '

1
‘ AR ) JT "Cﬁ--., 14 i s 1
fp ‘{" (f]l—l 4f])) (N—-—Z}"ﬁ) ’ for :C < Om
L Fp_y — Fp :
=
¢ — Zp 1w :
. f:u Al (fp+1 ”“fp)( T —) N fUl e O,,H.: :
Zp+1 — %p
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n
i ‘hole A7y —
Consequently, in the approximation on the whole €, f(¢) = El 1Ly,
1=

the expressions of the polynomials I;({) are identical to those already
written above for j # p — 1, p, p -+ 1 while for the cases j =p —1,
p, p -+ 1 we shall now have

C— %2 gyt e
z —, ftor Lel,_,,
Fr-1 7 Fr-2
4 .-I -
Loy (0 = L —z i- ’
( ——) , for Led,
0 otherwise
L.
L —2y A v
1 — ( — s for C €0,
21;. : [ @
r 1
Lﬁ( ") - h o 2z, T i |
1 — (-‘—’—— , for T el,i,
Tp—1 Zp
0 otherwise
b d
— 2 .
e LSS " for L eCpiy

: S 1
Lipiy(T) =3 Pl =D ¥
(”7”) , for € €04y,
L~ I .
Bytr T @
0 A otherwise
At onee we also obtain
~ 1 2 =, ab g Bp.y 3 [ & — 2 )
Ly ((2) = ——- -~ P2%_In e ALY ¥ramarw '3
27k 2y, — 2y T Ry \ Fpt P
, . P S
e 1 g By P i < Zp T WLl )
Ld) =4 —— 2 LWy g e — Iy e s
2m | R &py Ry T Ry L Eprr TR 1

| 1, of 2 emi@ppanrd 2 — Zyen x 7 — 2 \
Ll(z) ==t { et R ) L L T, -+ F},/]—w (7 }

w1 “pte & “pt1 Pl

where K (2) = S cald, o dt* while for the others L(2) G+ Py p — 4y

&

* This inle@ral conld be analylieally performed if & = rn (a ratignal mimber wilh
m << n) |3},
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2. Let us now consider a plane incompressible potential inviseid fluid
flow. It is well known that it is allways possible to join to sueh a flow an
analytic funetion f(z) — called the complex potential of the flow — whose
knowledge is entirely equivalent with the complete determination of
the flow.

Conversely, any holomorphic function in a given domain could be
interpreted as a complex potential of a planc incompressible potential
inviscid flow pending addition of some logarithmie terms (multiform fune-
tions) in the case of multiply-connected domains.

It we consider only a simple conneeted domain like the outside of an
obstacle (0) — the complex potential of a fluid flow with the (qualities
mentioned above, around the obstacle (€) — this will be an analytical
fanction in every finite point, having in the neighbourhood of infinity
the development

™

i @ a
f(2, 1) = w2 + ——1Inz a4 -+ ~2 Ll
7l 3 =

We denoted here by 1we,—= lim (1 L. the complex veloeity of the fluid at.
Zlooo (2

great distances, by I' a real function of time (which could be a constant or
even zero) called the circulation of the flow and which represents the multi-
formity period of the real part of the complex potential fy and by ¢, the
time which could explicitly appear, the flow being then a nonsta-
tionary one.

Additionally, the imaginary part of the values of the funetion Tz, t)
(Le. the stream funetion ) are given along the contour €. Supposing
that the obstacle (C) is performing a general rototranslation in the mass
of the fluid then, if i(2), m(f) are the components of the translation veloeity
in a point z, e(() — evaluated in a mobile system of coordinates Oaxy
centered in 2, = 0 —and o the instantaneous rotation of the profile,
the boundary condition for the function ¢ in the points of € is

Vo =ty — ma 4 ;) (z* -+ »*) -+ arbitrary funection of time |,. We remark

that if instead of the complex potential f(z, ) we would construct the com-

plex veloeity w(z, t) = -fli», this will be a holomorphie funetion in the
' dz
whole outside of the profile (€) which also includes the point af infinity.
Iie the neighbourhood of this point the function w(z; 1) has a development
of the type

1) _ I i Zaoglids by
w(z; 1) = s - e sz-_{-;‘; - _;{ -

It is just this regularity of the complex velocity that determines us
to use the above developed CVBEM for this function w(z; t) and not, for
the complex potential as we would have been tempted to.

Concerning the boundary conditions in the points of the contour €
ity will be written for the function w(z; #) under the form :
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There is a real function V 90 that for every f € [0 27) we have
B bl

w(YB)) = V(B) Tg((s:\ 4L 4im 4 ie [YB) — 24l where ¢ = {(B) the
parametrical equation of the Jordan rectifiable curve 0, is a 27 — periodi-
cal function, bounded and derivable in [0, 2w) so that {(B) # 0 and g(p) <
< M when M is a finite constant.

Finally, the possible multiformity of the function f leads to the
fulfilment of the equality

S w(z, tydz = I'(D),
c

where I'(f) is the “a priori” given circulation. Tn the case of the profiles
with an angular point in z = 2 € ¢, where the semi-tangents angle is
equal to m —pn (—1 S p < 0), the behaviour of the complex velocity
[

in this point,i.e. w(z;1) =0 [(2 — z,) 17" ] requires — to avoid the unbound-
ness of w in @, — to ehoose the circulation such that [4] T =L -1+
4+ M -m | N o, where the uniquely determined coefficients I, M, N,
depend upon the considered profile ().

Tn what follows, we want to illustrate how CVBEM works for deter-
mining the fluid flow induced by a displacement (rototranslation) in the
mass of the fluid, of a profile (), the fluid, having already a given bagic
flow of complex velocity wa(2 and which superposes over the first
flow.

Tor more generality, we shall suppose that the profile (€) has an
angular point and the basic flow presents some given singularities (vorti-
ces, sources, ebe.). Obviously, the envisaged problem: containg algo the
particular case of a flow past a fixed profile ((), the condition with an
‘g priori”’ given circulation becoming the famous J ukovski condition.
Additionally, the same method could be used for an arbitrary system of
profiles performing independent displacements in the mass of the fluid,
in the posgible presence of some walls, i.e. practically for. the majority of
the models of plane hydrodynamics.

Retaking, for the sake of simplicity, the case of only one protile
(0), the proposed problem can be formulated as follows.

Let the function wx(z) be given, the complex velocity of the basie
flow, a function which belongs to a class (a) of Turictions having. the
properties : i
1 a) they are holomorphic functions in the domain D, (the whole plane
Oxy, the point of infinity Deing included) except a bounded number (¢)
of points 2z, placed at a finite distance and which represent singular points
for these functions; let: D¥ be the domain D, from which one has taken
off the singular points {2}, i, and leb wi(«) be the value of the limit
Lim Wx(z) which obviously -exists and is Tinite. ’ )

|z =00
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2a) if I} is the circulation of the basic flow, this is cqual to i T, i.e.
with t}‘le sum.of the circulations of all the given singularities 0%=1§he flow.
Joncerning the unknown tunetion w(z) — the complex velocity of
the resultant flow obtained by the above-mentioned superposition U
will be looked for in a class of functions (b) satisfying the properties :
1b) they are holomorphic funetions in the domain D = D\ ( C)? except
the same points {z,},_~ which are the singular points of the same nature
as fgr wi(2) ; at infinity, their behaviour is identical with that of wxs(2)
i.e. I_]Tn w(z) = w(c0) = Wwr(c0);
2b) in the neighbourhood of the trailing edge 2z, = ¢
‘ ; § B By = € vhere the
semi-tangents angle is © — uw, We heweg At i R
e
w(z) = (2 — z,) 17" g(2), g(zp) # 0;
3 b) in the points of the curve €, the functions w(! ng 1o t
b) : he curve O, the f s w({(P)) belong to the class
H*i.e. they are Holderian funetions on € except the angular 1)(?int zp = L(B)
in whose neighbourhood one has . !

w(Y(B)) = ) -
[4B) — UBYT™

o * T . £l - 5 - .
where w* € H, in the same neighbourhood which means that w*(I(p)) is.

separately Holderian on the upper side and on the lower side of the profi
in" the neighbourhood of z, = U(By)); i sOTEheIpolL

4 D) in the points of the curve € they satisty, except tl * poi
the following boundary condition : Y T PRRY SR e Ty
There is a real continuous fonetion V(B) such that f
. ot such that for every
8e[0, 2n)\_{B,} onc has ® okl

2 (( B)) = V(P) C(@ 4+ 1 im +ie[YB) — z4], Where z,e(C)and {(?),

(B
m(t), o(t) ave the given functions of time determining the fotr i
of the profile (C); ng the rotoma‘nslam.on

5 b) they fulfil the equality S w(z)dz = '3 where the circulation of the

0 . C
flow T is chosen so that one has the boundness of the velocity in z,, i.e.:

Py = S . .
3 wy(z)dz, being a simple reclifiable curve surrounding all the singularitics z,

2 One supposes that during the displacement of (C) we have (E)CD*, i.c. the profile
al . ’ . e . . 1 yl
(C) does not cross ‘_[]1.0 points {Z"}‘r=l,q which always Dbelong to the outside of (C).

3 T n et P [N <
he singularily in z, being weak (() < —}—1 < l) the integral is convergenl,
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4], I'=1L -1+ M -m -+ N -«, where the coctficients L, B, N are
given with the obstacle (0). _

Let us now consider the function w(z) — wx(2). This function 1(11()\\'11
together with w(z) being holomorphic in the outside of (€) the Cauchy
formula is valid in D and we imimmediately have.

w(E) — wA(E) — S LGN

27i 2 — &

= E—L(L?_— dz for £eD*.
27l ) 7 — &
Cc
Finally, in order to use the boundary condition on ' we perform
T = YP*) e N 12} and so we gel

¥y — L § ) BB g
W(UBY) = wnUBH) = o O
1T w8 U gy
& B
* o ‘J’ qp) — UpY)

This is the boundary integral equation which will be used lfur the effective
construction of an approximative solution by CVBEM. Considering then
a system of nodal points 2o, 2y, <« <y Zu_1y Zpy Zoiyy - oy Tn=2y ON the curve C,
alltogether with the system of the piecewise interpolating La,gl'_a-nge'iur_u'.-
tions on each are (; (system which takes into account the behaviour in the
neighbourhood of 2,) we can write

YR — wa(UP)) + Y (w; — ww)Ly, where L(Y(P)) for 7 #p —1, p,
L i '
p 1 have the ex p.réﬁsimm specified in the first part of this paper while
for 4 =p —1, p, p 4+ 1 they could be obtained from those previously
< g

written by replacing e with —
' 1 —u l — N .

Using then the general caleulus alveady performed for Ljz) and .I.:;.n
i w(2,) — wnlzy) = ue — ive and Ly, = My -+ iN,; we are led again to
‘the real algebraic homogeneous system

H k3 Y
we = Y, My Y, Ny
j=1

5=l

113 1] .
vy = — Y My, + ) Ny
j=1 g=1
L WEG(R) — wu(lB) e H* and G being a sectionally smooth curve, lhe integral of

‘Cauchy Lype exisls. .
& The Plemelj formulas are still valid,
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which will be completed in this case by the complex equation

Y w; S L(0)df = I' or, equivalently by
t=1
C

Y uRe g L () dC 4+ v, Im S L{d¢ =T

= C ¢

Y wdm S LAl = ¥ v;Re g L(ag

=1 o j=1 )

These last two real equations allow to determine an unique solution of the
above homogenous system which inclides also the data on €. This unique
solution once introduced in the integral representation of the problem
(i.e. in our case the Cauchy formula) leads to the complete determination
of the complex velocity in every point of the domain of the flow.

The existence and the uniqueness of the solution of the proposed
problem (of the function w(2) locked for under the above representation)
are not considered here, they being studied earlier [17].

Regarding the singularities {z,},_, of the fluid flow admitting
that they are vortices (and so I'y#0) the absence of external forces implies

k=14
the fulfilling of a so called “freeddom condition” for them [4], i.e.

2 g p ! i, —cuse
e, 41 4+ im -+ iwz, = lim [w(z) - —1%‘7, r=1, ¢.
di i, &— & .

Under these circonstances, the displacement of the profile €' and of
the vortices {z,},_;, with corresponding circulations are correlated by the
above additional relations.

REFERENCES

[1] Petrilad, T., Mahemaiical models in plane hydrodynamics (in Romanian), Publishing
IHouse of the Romanian Academy, Bucarest, 1981,

[2] Hromadkall T. V. The complex variable boundary clemeni method, Springer-Verlag
Berlin, 1984,

[3] Homentcovschi, D,, Cocora, D, Mdgureanu, R., Some developments of

the CVBEM. Application to the mixed boundary-value problem for the Laplcce equation,

INCREST-Bucarest, preprint series in mathematics no. 13/1981,

[4] Couchet, G, La condition de Joukowsky en mouvements non stalionnaires, Faculté
des Sciences de Montpellicr, Scerétariat des Mathématiques, publication No. 74/1969-70.

[6] Petrild, T.,, Gheorghiu, C., Finile element methods and Applications (in Romanian),
Publishing House of the Romanian Academy of Sciences, Bucarest, 1987.

[6] Brebbic, G. A, Telles, J. C. F,, Wrobel, L. C., Boundary element techniques.
Theory and Applicalion in Engincering, Springer Verlag, Berlin, Heidelberg, New York,
Tokyo, 1984,

Received 21.V.1987

> -

Universily of Cluj-Napoca
Facully of Mathematics
R-3400 Cluj-Napoca
Romdnia



