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Abstraetl. Certain Kronrod-type rules with their error estimates have
more simply been derived by the use of interpolation coefficients in terms
of the Foumier coeffieients, We then obtain explicitly a family of extended

, ; o Z Al
rules for SF(Z) |dZ |, |dZ| = ds, Cy: |Z| = 1, where I'(Z) = ( & i )

3
Cl

and their error bounds found by use of Laurants expansion. Meanwhile,

we show that certain Kronrod rules give rise to the generalized Gauss

integration rules.

1. Introduetion. The Jacobi polynomialg P& ®(x), o, p >—1 are those
polynomials which are orthogonal with respect to the weight function
WeB(g) = (1 — )%t + @) and h, is the normalizing factor given by

1

Teud :S W B @) PPy P ®(w)da. Tt is well known that the rules

-1
which have the maximum degree of exactness (or polynomial degree)
are the so-called Gauss-Jacobi integration rules (GJIR) of the type :

W B f(a)de — Y, Hui f(n) + Ralf), -

i=1

(1) I(f) =

,I_,(_,'\_.

with R.(f) = 0, whenever f(z) is a polynomial of degree 2n —1. The
Kronrod extension of GJIR is given by

i w41
(2) Iy =Y, wif(ws) + Y vif(y) + Bal(f),

i=1 i =1

I

with the degree of exactness 3n - 1, where {w:!7 are the zeroes of polyno-
mials orthogonal on [a, b] with respect to W® ®(z) and y,’s are the zeroes
of certain polynomial K.y .(x).

The first to discover (2) was Kronrod who dealt with the case («, f) =
= (0, 0), the ‘Gauss-Legendre rule. Subsequently, Patterson (1967),
Piesses & Braders (1974) and Monegato (1976) improved on Kronrod’s
original work. Monegato (1976, 79) points out the Kronrod extension of
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n-point GJIR corresponding to (o, ) = (—1/2, —1/2) and (1/2, 1/2) in
explicit forms. The rules are exact for polynomials of degree less than
4n — 1 and 4n + i, respectively.

Let T'.(@) = Cos (n are Cos ), n = 0, 1... be the Chebyshev poly-
nomials of the first kind defined on [—1,17. {f f(2) is continuous and boun-
ded variation on [—1, -}-17, then f has a uniformly convergeiit Chebyshev-
Fourier expansion over [—1, 17]:

8

(3) f@) = %) axl'u(2),

ol

=0

N

n

(The prime on the sumimation indicates that the firet term is to be halved).
With & = Cos 0, since ©';(2) == Cos n0, (3) becomes

(4) Sleos 0) = %' "a, cos nb,

n=0
the Fourier cosine expansion of the even periodic function f(Cos 0) over
half the period [0, #]. The coefficientsin the Fouricer expansion (3) or {(4)
are given exactly as

(5) tn = ggf(cos Bycos »0 dO, n =0, 1,...
T o
Let
(6) Lify = Sf((‘os 0)d0 = 72: g
0

In practice, the integrals are approximated by sums over a half period.
The trapezcidal rule is approximated using N or N -- 1 points

O = (4o 1y J=0LN-1, fore=--

= 0(1)X, for o = 0.

Our main results in the paper are based on a theorem in section 2 connecting
interpolating coefficients to the Fourier coefficients. In section 3,we then
show that certain closed form Kronrod type quadratures with their errors
turn out to coincide with the extended Gauss Chebyshev quadratures. In
Bec. 4 we obtain explicitly a family of extended rules round the unit circle
Oy :|Z] =1, Certain extended rules over [—1, 1] with the weight func-
tion (1 — u?) "2 have becn derived from the ezitended rules over C,
for if f(w) is analytic on [—1, 1], then f(%z—) e A(R(r™%, 7)), 7 > 1.
Using Laurants expansion, the estimates of these rules more simply turn
out to be the same as would otherwise result over Hilbert spaces through

Davis method.
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_ 2 Determination of Chebyshev eocflicients. For iw— 1/2, we required
to introduce

N—1
Mws) = 5,7 Ty,
=0
given the functional values at N points @; = cos (j = l} la J =
2/ N

" aiTx)), given

Nl

= DN —1. For w =0, we need instead fla]) — 3
=0

that the function values at the N -+ 1 points 2} = cos J7 j = O(1) N,

N :

)

(Flere single prime indicates that the first tern is to be halved and double
brime means that first and the last term is to be multiplied by 1/2).

Since 0; = (2§ — 1) 5717, t = 1(1)N¥ be » points equi-spaced inside
vl

[0, 7], 80 tl_mt 2, = Cos 0, are the zeroes of TW(») over [—1,1]. Consider
the mid-point approximation

N

I Y
(7) i S (@),
for L(f). If we define the numbers
. 2 Nam 1
8 i e N aNT A § — —
(8) o o ];i!l Ha) Ti(@;), © = L)V, o =50
and
r 2 \I*vw r’
(9) ap = o % H@) Ti(z)), ©= 01N, o = 0.
=

It is of interest to compare the interpolation coefficients a;, «/ with the
Fourier coefficients a; so thab

(10) oy = g - Z (—1)”‘(a2,,,,N_1¢ + Gomiye), T = 0(L)N—1
m=1

and

(11) ai =+ ¥ (Gomy - + Gomyss), i = O(L)N.

=1

(See Fox and Parker [19727). From the above two equations, we have :
7 TuroreM 1. If o, and o« are the Chebyshev Coefficients and a; ore
the usual Fourter Coeffictents as defined above, then ‘

ol
(12) E (o 4= o) = a; 4 Qgnt + Ogprs - ..

We note that above is a better approximation of a; forall 4,0 <¢ < N
as compared to (10) or (11).
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3. Derivation of quadrature formulae

1. Extended Gauss-Chebyshev Quadrature Formulae (closed type). For
1 =0, Eq. (12) gives

1

1 N—]
8(1 — %) ? fla)dw = Z’[ ‘MO f (Cos (27 =11) é%) -
—1

. ].\:/r .T‘ \" vRE
(13) +3F (oos 4. )] bR, ().
j=o :
We note that above iz Kronrod-type quadratures of the form (£). Upon
simplifieation, we have
TUEOREM 2.

1,
1 oN .y
’ -, NG T " E B g Ak ]

(13") g,(1 — g2 * flo)de = i E‘,. s (\ o QT)- + Bryy, i (.

-1
Meanwhile, we find that above is simply the Kronrod extension ([{K)
of the n-point GJIR in the closed form corresponding to « = 8 = —1/2
as shown by Monegato[1976]. Upon comparison with (12), the corresponding
error is given by

(14) E;L;Nﬂ(f) = 3 Gamy!

m=1

We observe that (14) implies that Lﬁ-‘i,v_{_l(f) —0, whenever fis a polynomial
of degree less than 4N. If the Chebyshev coefficients for f* decrease suffi-
ciently rapidly, then for large W,
(14") By () = mayy.
above indicates that the above rule is exaet for polynomials of degree
4N — 1.

Case (i1) Bwtended Guuss-Chebyshev quadrature formula (2N.D Fnd).
The extended Gauss-Chebyshev quadrature formula of the closed type (13)
applied to the function (1 — %) f(w) with 2N - 3 point based on Kron-
rod-rule gives

THEOREM 3.

1
)l N1
rolats LN TR SSIRATEITIRRY AT o R L Suoe T
g, (1 — &%) f(r) TR [j21 sin®(2j — 1) N L2 X
—1
e Bl wm) (o Tl nEe o =
« fleos-2 =L )4 v osinz {25 ) fleos =27 |+ Bl () =
f(os’zNJr?,n)}él LAy K Sy ) avl]
o 24 , ol |
(15) LT LN g Y L OO

T oN42 S
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| .-Tr o . .
where a; = Cos W-J4 The corresponding exror is given by
ON+2

JARE

Bl () = By, (1 — a)f(2)).

I af denoles the Chebyshew Fourier coefficients for (1 -— @%)f(x), then

; -l '
(’«1’? = (2(0’;4 — gy — (H/L.-‘Z}), = 0, J_, vn e
4
kE =
. I . e
Bince EU‘ZN—]»l(j) =T Z wr(N»l-l)‘”
m=1
T [ee)
(16) =1 E (amyvam_g = 2Cqmy+am += G gm2)-
m=1

The above indicates that the above rule is exact for the polynomials of
degree 4N - 1. ' '
(191) Bwtended Gauss-Jacobt quadrature formule (semi-open type).
The extended quadrature formula of the type (13) applied to the function
(1 — o)f(2) with 2N -} 1 points gives
T™IEOREM 4.
1

1 — a2 e L= 71: 2% 41\
== o)dy = — | § s8in%2j 4+ 1) -—-- feos =)
S (1 4 a:) Ha) N L":o @+ )4N f( o8 2N 7r)+

N : . *
+ EU" sinz 211% f(cos %V’i)] + Efiy,: (1 — @) fla).
j= ’

4
P 2N

(17) — ﬁj;;“ — zY Y A B (D

T

where @, = Cos —

5 and the last term in the summation above is

to be multiplied by 1/2. Above is Semi-open formula because of weight
zero at x = 1. 1t is easy to obtain

z (Gamn-1 — 2@amy ~+ Gany+1)

=1

T

(18) E}}f‘\r-pl (f) T

With the help of (18), (17)is exact for all polynomials of degree < 4N — 2.

Now, let ¢, denote the closed elliptic disk in the complex plane boun-
ded by the ellipse with fociat (1, 0).and (—1, 0) and with half axes «andb,
where a - b = » > 1. Liet f be real valued on [—T1, 1] with an extension
which is analytic on z,. Then it is well known (Cf. Meinardus {11, p. 91)) :

M, .
(19) laxl < 220 B, sup{] i) |+ € ).
: .

Thus, with the help of (19) from (14), (16) and (18), we can find tle esti-
mates of errors of the corresponding formulae.
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% Extended integration vule round the unit cirele, If f(w) (w = R(w)
is analytic on [ -1, 17, then there oxists 7 = 1 such that f(w) e A(e) and,

-7 . o L
subsequently, f (gié/—— e A(R(r~% 1)). Since the unit circleCy( R(r~47)),
»>1 and under {ransformation w = 1/2 (Z - Z7Y, 0, is mapped  onto

the interval —1' <'u' < 1 ‘counted ‘twice, an extended rule over O is
therefore obtained from an equivalent rule over [—1, 17.

. 2 - &7t :
Now, let f(w) € A(e,), r > 1 and (=) :f( 2——), Lhen

F(z) e 4(r1, ), r >1. Since
1
l»ugi’!‘(z)ds = S (L= ) Ay du = I( nN.

Cy S

(20)

TFrom (13) and (20), we have
- 4N—1 ini
) ; i gkl i 1o N AT SR
(21) o B, Wit p W (T ::S[ﬂ(z)da N VA ACRLE
f i e j=0
Cy
We observe that above is a particular case of Theorem D,
THEOREM b. -
2N —1

FEECHy = S F(2) ds - Y, j\LF((;"(’”“W”N)),

j=0 N

(22)

Cy

for « =0 and n = 2N. i ! . '
The above represents an extended family of integration rules over G,
We now find the estimates for (22). Applying Laurants expansion to F(z),

we have
(23) F(z) =Y, ar 2 - Eb;\z"",

Tik=0]1" k=1 |
where '

I( 1 T
gy =i\ Ty gt —M,—-S-ck-—l_ﬁ*(t)dt.
oni ) 1 : 27l
ct i -1

1t B, denotes the error of some numerical approximation, we have from (23)

(k)i ) X @) + 5 tebe),
[ k=20 k=1
= |E(F@)] < kﬁi | | Ha(2) | + {i, b | | Bz ™) |-

Noting |ax| < #7*M, and |b;| < 77 M-y

where M, = max |[F(2)] on |2|=7.
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Qs o= 4 2n, kdn, ..
0 ', kA 420, e,
Now substituting the above in (24), we have '

(25) B < 4,,271,1; (M, .

14&” da

Since  BueH) = {

= ' i . A . T LI ST L !
We remark that a proper choice of « in [ 0, oN may help to reduce the
} ' 21

number of function evalnations. In particular, we note the following exten-
ded quadratures.
For o =0, n=2N |1,

26 P =T~ {0+ 3. 1 {eon Z))

For o == nfn, n =2N -1,
@) Bb () = ) {1 2 5 (s R )

For o = =n/n, n = 2N,

. RE TR Tor 1o ARIIRER Y (RL
ORI O YR G

The error cstimates for (26—28) at once follow from (25). Further
we observe that using (25) the same estimates do result for (14), (16) and (18)
as derived in section 3. All these estimates turn out more simply to be
the same as otherwise result using different Hilbert spaces via Davis
method.
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