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1. Let us consider the linear recurrence of order p :

»
1) Lp(@n) = Yy dj Zuyy =0, n 20
=0

J
where d, =1 and d, # 0. As it is known (see [2]), the representation of

the sequences which satisfy this relation is related to the solutions of the
algebraic equation :

b _ P
(2) Ly(")t* =Y, &) =T (¢t — ).
i=0 =1
For example, we shall use the sequence (u,)s-o defined by :
(3) Ly(ua) =0,V 2 05 ug= ... =ty_5=20, up,_, = 1.
If the roots of (2) are s; multiple of order g¢; for ¢ =1, ..., » (with

¢+ ...+ ¢ = p), then:
U, = Z 1)1'(%) . 8;‘
i=1
where P; is a polynomial of degree ¢; and
Y, Puj)-si=mwu; forj=0,...,p—1.
1=1

So,if r =1, thatis t, = ... =1, = s, then:

2w n
Uy = §" -
(p~l)

and if r = p, that is t; # ¢; for i # j§, then :
? »
Uy — Z [tg‘/l—[(tj ‘—ti)]s
j=1 i=1
it

5 — c. MbD
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References to other i
L E et o r methods of representation of recurrent sequernces

Our basic method of study i i
: : ; y is furnished by the f i i
may be proved by simple computation (sce [{6])6: e A

LEMMA 1. If the sequence (@n)nzo is represented by :

4
(4) == Unsp—i_y Yi

=0
where (Wa)u~, is given by (3), then :

Lp(wﬂ) = Yutp.

If (xn a0 18 o1 B !
85" that wo )ggg: given, then (y,).~, may be found, step by step, from (4),

Imvva 2. Let pcR. In order that L)y e P for every n > 0

it 18 necessar o j
h y ond sufficient that ()50 be rep.resented by (4) with y; € P for

o bt
OROLLARY 1. The sequence (2,)us0 verifies the relations :
Lp(mn) =2y n =0

tf and only if it is represented by (4) with y; = 2_,, fori > p
COROLLARY 2. The seque ) i 0 )
i it regtasentadt b quence (¥)u=y verifies the relation (1) if and only
g »
€ ) &y = Z Uisp_i_y Yi.
1=0
On the vector space § of all s
, ST sequ 5, le s i
operator T dofimed foramy o o0l 5 (11) ye?ee&,, let us congider the shift
By = 2" = (2)us0, ) = 0, @, =y, n>1
If we define the sequence :
=4
(5) U = (Up_14n)n>o
the relation (5) may be rewritten as :
p—t
Xr — Z ?/L' o J‘i ’M/?
(=0

where F'2 = i ; R - .
e o ha (chand E'is obtained by the composition of 4 exemplars of H,

COROLLARY 3. The sequences :

u?, u? , ..., B?y?

Jorm a basis for the subspace of sequences which verify (1).
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3. Tn what follows, we shall deal with the cone of convex sequences in
respect to the operator L, , thatis:
KoL) = {(za)ite s Lyp(w) 2 0, 0 < v <m0 — P}

or
K(Ly) = {(@u)uzo Ly(®) 2 0, 0 2 0‘}'

.. =1, = 1 corresponds to the usual convexity of
. We have given the representation of these
51, for the case p = 2 (and L, arbitrary)
his tollows from Lemma 1.

The case §; = .
order p as L, = A" (see [12])
{ordinary) convex sequences in {1
in [9] and for the general case in [16]. T

TriorEM 1. @) The sequence (x.),-o belongs to K,.(Ly) if and only
if it may be represented by (4), with y; =2 0 forp <1 < m —P.

b) The sequence (@u)u=o belongs to K(L,) if and only if it may be re-
presented by (4) with y. > O for 1z p. s

The result from part b) may be reformulated if we consider (as it
was done in [5]and then in [10], [11] and [17]) the metric d on S, detined
by :

P Lt 1

a(e, y) = 2-"
( ,J) EO 1+|/I"n_yn!

for @ = (#)nso and ¥ = (Yn)uzo. Liet us also put:
Ly(2) = (L'p(mn))n>0-

We have at once :
LemMA 3. If w” is given by (6) then:

Ly(E'u?) =0 for 0<k<p—1

and
Lp(Eh up) - (&1,1{-—1})4120 fOT L > P

where 3,1 is Kronecker's symbol. -
THREOREM 2. The sequence x belongs to K(I,) if and only if :

(7) x = lim z* = z a*

i (o) n=0

where

"
" =Y Y- Bfu?, with y, > 0 for k =2p
k=0
and the limit is taken in respect to the metric d.

Proof. As Erw” has the first » components zero, any Sequence @
is the limit of such a linear combination (in tact, # and " have the same
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first » 4 1 components). But
Ly(") = Wpy -1 ¥n,0,0. .. )= Ly (%)

so that « is in K(L,) if and only if y, > 0 for n > p.

3. In [16] we have also characterized the ele t :
of Kn(L,) that is: ements of the dual cone

I('ﬁ (LJZ) - {(an)v,zn—o: Z 42 -’vk > 0, V(a?k);::o S Ifm(Lp)} -
| k=0

Asg !t.fs ste'u'.ed in [3], such results were obtained for the first time for con-
vex ‘h}uctwu_s by T. Popoviciu (see [14] for more references).

They were transposed for convex sequences by J. B. Pedarié in [13].
A cogmlbru(_‘.twelcha.mct-nrimticm is given in [20]. The representation for
p = 2 is given in [8]. The general case follows easy from Theorem 1.

TuroreM 3. The sequence (a.)., bel i ; Iy i
1t satisfies the rolations : i S Ry ke

Zk Ay Unip_k_1 — 0 f07‘ 0k yp— i
=

and
nr

Z On Unp_r-1 & 0 fO’I" P < k< m.
n=*~k

Ol _Usmg Theorem 2 we can transpose the result for the case of m
infinite. But, as in [17] we want to deal with a more general case. We
remind some definitions. The functional 4 : 8 — [R is said to be :

a) superadditive, if :

Az +y) > A(@) + Aly), Yo,y 8
b) positively superhomogencous, if :

Alox) > a- A(w), Ywel, Va>0;
¢) upper semicontinuous, it :

(8) lim sup A(2z") € A(lim z").

H—+00 7n—+00

Turorrm 4. Let 4:8 —+ R be o supperadditive, positively super-
homogeneous, upper semicontinuous functional. In order that A(z) = 0 for
every x € K(L,) 1t 18 necessary and sufficient that :

(9) A(EFur) > 0 for k > 0
and

(10) A(—Euw?) 2 0 for 0 <k <p.
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Proof. From the theorem 2, we have E‘u? e K(L,) for k > 0 and
also — FFu, € K(Ly) for 0 < k << p, 80 that the conditions (9) and (10) are
necessary. They are also qufficient. For an @ € K(L,) we have (7) and S0,

for n>p:
A(a") = Ayow? -+ yy - Bw? + oo oy, Bru) 2 Alyew”)

Ay, But) + Ay, - E*u) > | Yol - Al(sgn Yo) w*) +
4o Y] s Al(Sg0 Yp_1) - BPUP) + Yy - A(BU) +

o e A(BEMR) 20

thus, from (8), A(x) = 0.
CoroLLARY 4. Let A: S —R bea linear and continuous functional.
In order that A(z) > 0 for every @ e K(L,) it .is necessary and sufficient
that :
A(Fu?) =0 for 0 < E<p

and
A(F*?) > 0 for k=P

We remark that in this corollary R can be replaced by an arbitrary
linear topological space with a ‘“‘positive” cone.

1t we don’t work with divergent series, Corollary 4 takes the follo-
wing form. Let us denote :

K* (Lp) = {(t = (a1;)1;>0 H 3 Ng + On = 0 if n> g

& av =Y, @® >0 V&= (wn)ﬂ>oeI((L1’)} .

n=0
CoroLLARY 5. The finally null sequence a belongs 10 K*(L,) if and
only if:
a Fur =0 for 0< k<P

and
o Brurz 0 for k=D

‘We point 0111': that these results generalize the corresponding theorems
from [5] and [17].

% We can further generalize these results as follows. Let A4 :8 — S
be a continuous linear operator on S and L,, Ly two linear Tecurrences
of the form (1). The problem is when holds :

(1) A (L)) = K(Ly)-
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TuroREM 5. If 4:8 — 8 is a linear continuous operator, then (11)
holds if and only if .

LA(Bw?)) =0 for 0<k<p

and
Ly(A(E*?)) = 0 for k > p.

Proof. As Ii*u? € K(L,) for k > 0 and —E*4” € K(L,) for 0 < k <p,
the conditions are necessary. They are also sufficiently. Indeed, let x e

1

e K(I,). By (7), « = lim 4", where a* = ¥, % £*u? and y,>0 for k>p.
700 k=0
So :

Li(A(»)) = lim Ly(A(%)) =

#—00

1] 1
=lim Y g L(A(Bw)) =1lim Y v, - Li(A(E*%")) > 0.
H—00 k=0 "—00 k=[)
We remark that 4 is usually given by a double infinite matrix 4 =
= (@ui)ni>o With the property that for any »>0 there is a k, such that
Gur = O for k> k. I © = (@ )eso then

An) = (f - m)
k=0 i

The case of triungular matrices, that is k, = n, was studied, for L, = I; =
= A in [4] and [7]. His special case of generalized arithmetic means is
effectively solved : the case p = 2 in [21] and in an improved form in
[18], while the general case was initiated in [6] and accomplished in [19].
We shall give this result in the next paragraph. Also, the case L, — L;
is studied in [8].

5. Let ¢ = (¢z)n=o be a sequence of positive numbers. It defines an
operator @ : § — S by :if ¥ = (@4)ns0 then Q(2) = X = (Xu)uso is given by :

#>0

Xo= (g + . F @)@+ -+ @)

We denote by K, = K(A?) the setof (ordinary) p-convex sequences.
In [19] we have proved that Q(K,) c K, if and only if -

0 n—1
(12) q,.=qo( +n ), n>1

with v = ¢q,/q,, where :

('w):l, (w):w(w—l)...(w—n—[—l) for m > 1.
0 n n!

Let us denote by M'K,the set of sequences » with the property that
Q(x) € K, where ¢ is given by (12). In[19] it is proved that re M°K, if
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and only if :

I _7_2 g M =1
(n—l—;; ; )(r@—i—p —l—l) 2k, 2 20 for k= p.

p—1 v
This may be transcript as follows :
LEmmA 4. The sequence x belongs to M K, if and only if :

Xy —
k=0

=] —1 = el
v =¥, [(1 +£—v__) Bfu? + ot o e E*‘u”‘l] iy 2y = 0 for I > p.
(4

As in the other cases this gives :

THEOREM 6. The linear continuous functional A : 8§ — R wverifies
the condition A(x) = 0 for every x € M I, if and only if:

(0 + p — DAE W) + (k —p + DAE W) =0 for 0 <k <p

and
(v +p—DAEW) + (k—p + 1) AF1) > 0 for Ik > p.

In the special case p = 2, v = 1 this result is given in [11].
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