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1. Introduetion. In this paper we study several variants of the para-
metrical procedure [15] for solving fractional max-min programming
problems. This procedure represents a generalization for the fractional
max-min problems of the Dinkelbach parametrical method (7] given for
usual fractional programming. It includes also the parametrical procedures
considered by Schaible [12] and Tigan [16] for discrete max-min problems.
In the particular case of the bilinear fractional max-min programming,
a connection between the parametrical procedure and the substitution
method [17] is established.

The paper is divided into seven sections. The main definitions, nota-
tions and the general statement of the fractional max-min problem are
given in the second section.

Section 3 deals with a family of auxiliary nonfractional max-min
problems associated to the fractional max-min problem. Several optimality
conditions using the optimal value function of this family are derived.
These results generalize similar properties obtained in the case of usual
fractional programming problems (see, e.g. Refs. [4], [7], [8], [11], [14]).

Section 4 is devoted to the parametrical procedure for solving
fractional max-min problems. Two parametrical iterative algorithms are
given and a result concerning their convergence is proved. Both algorithms
involve the solving of a (finite or infinite) sequence of auxiliary non-
fractional max-min problems. :

In Section 5 approximate finite variants of the parametrical pro-
cedure are considered.

Applications of the general parametrical procedure in certain parti-
cular fractional max-min problems are given in the last two sections.
In the particular cases considered it is possible to simplify the general
procedure by replacing, at cach iteration, the solving of the auxiliary
max-min problem either by an usual maximization problem in the case
of separable fractional max-min problems (Section 6), or by a linear pro-
gramming problem in the case of bilinear fractional max-min problem
(section 7).

Other applications of the parametrical procedure to certain discrete
fractional max-min problems are given in Refs. [10] and [20].

Also, by performing the Charnes-Copper variable change [5] in
the bilinear fractional max-min programming problem with linear con-
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s11:1a11_1§15, it can be shown that the specialization of the parametrical
? gorithm to this pa;‘tlcula.r.nmx—-_ml-n problem can be regarded as a method
or golvmg a certain. nonlinear max-min programming problem with a
quadratic objective function and nonlinear constraints of a special type

2. Preliminary Notations, Deliniti i
li : ations, De ons and Properties. Let X < R*
?nd Yrg R be two nonvoid sets and let 7' be a,II))oint—to—sJét maJp—pifﬂf
rom X to Y such that for every # € X the image set T(z) is nonvoid. Le?;'

and ¢ be two 1 iong inc Mo oot v &
J; ssumg that\ real functions defined on the set X x Y. Moreover, let us

(2.1) g(xz,y) # 0 for all (x,y)e X x Y.
Then we can define the fractional function h: X XY — R by
(2.2) h(z,y) = f@y) for every (x,9)e XX Y.
gl&y) '

’
The fractional max-mi rOQr i : gty
5 \ n programming problem under consideration
FMM. Find

(2.3) V — max min J®9).
1EX el g(a, y)

Definitton 2.1. A zlgm';« (x',y’ GV e :

e i r (2 y") € X XY is called an optimal soluti
or the fraction i ) T v optvmal Solution
{ atisfiedf,-ac tonal max-min problem FM M iff the following conditions are

(2.4) y e T,

(2.5) Wz, y') =V,

(2.6) ‘ nr;i(n) h(x',y) = h(z',y’).
yeT(a’

Definition 2.2. Let € be a gi :

o 2.2. Le @ gwoen nonnegative real number. A pais
;,?.{:b?ﬁ,)eifg ]g s g“llﬁd e-optimal solution for the fractional max —};ITIIT:
i B ‘ o ¢ m
satisfied iff besides condition (2.4) the following two conditions are

(2.7) WMa'yy') +e >V,
(2.8) hz'yy') — e < min k(a', y).
yET (')

It should be noted that the notion of c-optimal s lion i
by Definition 2.2 generalizes that of optimalpsoluaéiozggﬁﬁils 1;1}13503;0%(%
e-optimal solutions, besides the optimal solutions (i.e. 0-optimal solutic
meludﬁf1 applﬁ)ximate optimal solutions. ot
. Throughout the er ‘ning B " M i
gruz oLl fol%owing eon(%%ﬁ) & (ﬁ){])gl((}lefmnb problem FMM we will assume
H1) T(zx)is a compact set for every z e X.
H2) X is a compact set. )
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H3) g¢(x,y) >0 for every z € X and y € T(x).
H41) f and g are continuous functions on the set AxY.
H5) The point-to-set mapping 7' is continuous on X in the sense of
Berge [3].
The above assumptions are satisfied, for instance, by the max-min

fractional problems considered in Refs. [6], [2], [10], [17] and [19].
Under the assumptions IH1) — HB), we can define the function

H:X— R by
(2.9) H(x) = min h(z,y) for all ze X.
yeT ()
Concerning the function H we can state the following result.

Lemva 2.1.  If the assumptions H1) — UB) hold, then H is a con-
tinuous function.

Proof. The conclusion of the Lemma is a direct consequence of the
“Theorem of maximum’’ (see Berge [3]).

TFrom Lemma 2.1 and the assumptions H1) — H5) we can easily get
the following result.

Luuma 2.2. The problem FMM has at least an optimal solution.

Proof. The asserted result dircetly follows from the continuity of
the functions b and H and the compactness of the sets X and T(w) (2 € X).

3. The Auxiliary Parametrical Problem and Related Properties. In
this section we deal mainly with an auxiliary max-min problem asso-
ciated with the fractional max-min problem ¥ M M. This auxiliary problem
depends on a real parameter ¢ and can be stated as follows :

PA(t). Find
(3.1) F(t) = max min (f(z,y) — tg(x, 7))-

reX  yeT(x)
Let us define the function ¢: Rx X XY — R, by

(3-2) q(t, m,f’/) :f(w7?/) - tg(w) y)'
Under the assumptions H1) — H5) the equality (3.1) defines a
function F : B — R, which is called the optimal value function of the para-

metrical problem PA(t), te R.
Next we will present some useful properties of the optimal value
function F. Firstly, we note that, by H1) — H5), we can consider the

function E: RX X — R, where
(3.3) E(t, #) = min ¢(t, @,y) for all (t,2) e R X X.
yeT (x)

LEmma 3.1. ([15]). The function F is a mondecreasing function.

LemmA 3.2, If the assumptions H1) — H5) hold, then ¥ 18 a conti-
nuous function on K.

Proof. From H4) and (3.2) it results that ¢ is a continuous function.
Then using the “Theorem of maximum’ (see [3] or [18]) for problem
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(3.3), it follows that ¥ is a continuous function too. By applying again
the “Theorem of maximum’ to the problem T

(3.3 ' () = max K, ),
reX

we get that F is continuous.

Levma 3.3. If tis a real number such that there exists z' ¢ X for
which

(3.4) t= min h(z’,y),
yel(a’)

then

(3.5) F(t) = 0.

Proof. From (3.4) and (2.2) it results that

t < f(T—,’y)— for all y e T(x),
gz’ )
whence, by H3), we get
J@y) —tg(@'yy) > 0 for all ye T(x'),
which means that

(3.6) B(t, ¢') = min (fla', y) — tg(a', y)) > 0.

yel(x')
But from (3.3") it is evident that
ity = Bt «').
Therefore, by (3.6), we can conclude that (3.5) holds.

Lemma 3.4, For a given real number t',let "' ¢ X be such that

(3.7) F(t') = B, o),
and let y'' e T(2"') be an optimal solution for the minimization problem :
(3.8) 1" = min h(x”,y).

yeT(x')

Then the following inequality holds :
3.9) - gty ﬁFf,t),; :
‘ 9", 9")
Proof. Indeed, by (3.7), (3.1) and (3.3), we have

() :.gi}},)(f(w”, y) — v, y) < flayy") —tg(a”, ).

yetly

But, using H3), it results that

v

. F N
h(mn, y//) — ¢ > __’(’t )” s
gx"yy")

whenee, by (3.8), we deduce that (3.9) holds.
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, Next we will present some necessary and sufficient optimality con-
ditions for the problem ¥ M M.

TurorEM 3.1 ([15]). Let '€ X, y' € I(2') and t' € R be such that
(3.10) "= hz'yy') = min (2, y).

yel'(x)
Then (a'yy’) is an optimal solution for the problem FMM if and only if
F(t')y = 0.

TurorEM 3.2. F(t') = 0 if and only if V =1

Proof. Let us suppose that V- = ¢'. Then by Lemma 2.2 there exists
(', 9') e X X Y, which is an optimal solution for the problem F M M. There-
fore, by Definition 2.1,

t" = min &', y),
yeT(x)
and then it follows from Theorem 3.1 that I'(¢’) = 0.

Now, let us assume that F({') = 0 and that V # ¢'. First, let us
suppose that ¢'< V. Then, by Lemma 2 from [15], the equality F(t') = 0
implies V < ¢'. But this inequality contradicts the supposition that ¢’ < V.

Let us suppose now that V' < t'. Then there is a positive number #,
such that " —» = V.

Consequently, we have

(3.11) " —7r > min h(x,y), for all ze X,
yeT(x)
For every e X, let M(x) be the set of optimal solutions for the
minimization problem (2.9), that is

(3.12) M(z) = {y" € T(x) | Wz, y") = H(z)}.
Therefore, from (3.11) we get
vV —rz f(w,_y”) for all e X and y"” ¢ M(x),
92y y")

whence, from H3), we obtain
(313)  flw,y") —t'g(z,9"") < —rg(z,y”) for all ze X and 9" e M(z):
But, from (3.13) it follows that

(3.14) min (f(@,y) — t'g(w, ¥)) < — rg(z,y"), for all ze X

veT (x)

and y"' e M(z).

Let (2', ') be an optimal solution for the problem PA(t). Then, from
(3.14) we get at once that

B(t') < —rg(a’,y’) <0,

which contradicts the assumption that F(¢') = 0. Consequently, the suppo-
sition tl_lat t’ # V is not true. Therefore, we can conclude that ¢ = V.
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From Theorem 3.2 and Lemma 3.1 we immediately obtain the follow-
ing consequence.

Consequence 3.1. (i) 1'(t) > 0 if and only if V > 1.

(#8) F(t) < 0 if and only if V<t.

Proof : (i) Let us prove that V> ¢ implies #(1) > 0. By Lemma 3.1,
the inequality 1 >¢ implies F(t) > F(V) = 0. It £(t) = 0, then by
Theorem 3.2 it results that ¢ — V, which contradicts the inequality ¥V >t.
Therefore, F(2) > 0.

Conversely, let us prove that L(1) >0 implies V >¢. Indeed, if
we suppose that V < #, then by Lemma 3.1, it follows that

B(t) < (V) =0,
which eontradicts the inequality F(z) > 0. Hence V > 1.
The part (¢7) is an obvious consequence of part (7) and Theorem 3.2.
TuroreM 3.3. Let ¢’ € R and 2’ € X be such that

(3.15) <V,
F(t’) a E(t,y .’L"),
and let y' € T(x') be an optimal solution Jor the minimization problem :

¥ = min h(z’,y).
xeT(x)
If i =t then (2',y’) is an optimal solution for the problem ¥ M M.
Proof. From Lemma 3.4 we have
Ft’)

(3.16) "=t > )
9@’ y")
But, from (3.15) and Consequence 3.1 it follows that
(3.17) ) = o.

On the other hand, by making ¢ = ¢’ in (3.16), we get F(t') < 0, which
together with (3.17) implies that F{t') =0 = F(t").

Therefore, according to Theorem 3.1 and Definition 2.1, (2’,y’) is
an optimal solution for the problem FM M.

The following theorem gives an upper bound of the optimal value V
of the F'M M problem.

THEOREM 3.4. If the function g satisfies the condition :

(3.18) g(m, Y¥) 2 B>0 for all xc X and y e T(»),
then
(3.19) V<it+ ﬁ%

for every real number 1,

Proof. Let (z,4’) be an optimal solution of the problem FM M
and let ¥’ € T(a’) be such that

[y y") —tgla’, y") =yg;i(g) A2’y y) — t g(a'y y)).
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Then it follows by (3.1) that
J@y") —tg(z'yy") < F(),
whenee, due to assumption H3), we get
()

3.20 ‘ Ma'yy'') — 1t < ————-
(3.20) . g(a@'yy")

But, by (2.6) we have
'y y") < Ma'yy"'),

and go it resnlts that

oY) — U< Mathy) — < ——r
e ’ o7, y")
Then, taking into account (3.18), it follows that

W'y y) —t< ="

whence, since from Definition 2.1 V = h(z', '), we get (3.19).

4. The Parametrical Procedure. In this section firstly we recall the
parametrical procedure for solving the fractional max-min problem FM M
given in Ref. [15]. Also, using the optimality pondltlon given in Theorgm
3.3 as a stop criterion, we consider a modification of this procedure, thh
will be applied later (see Section 6) in the casc of separable fractional
max-min problems. ] _

Each of these algorithims produces a sequence of points (@, yr) in
X xY such that the sequence (h(xy,y:)) of the corresponding objective
function values converges to the optimal value V of the fractional max-min
problem FM M.

Algorithm 1
Step 1. Choose z, € X and set L : = 0.
Step 2. Find ¢, € B and ¥, ¢ T(2) such that

(4.1) i = h(&y, ¥x) = min Ay, y). o
yeT(xk)
Step 3. Find an optimal solution (&, ¥’) and the optimal value
F(t,) of the auxiliary max-min problem PA(t;), that is
(4.2) F(ty) = max min (f(x,y) — te g(w,y)).

xe€X xeT(x)
) i b i ding to
Step 4. ¢) If F(#;) = 0, then the a,lg_onthm stops, since according
Theoremp?).l, (%wy i) 18 an ,optimal solution for the problem F M M.
i1) If
(4.3) () >0

then take L: =1k -+ 1 and go to Step 2.
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The continuation criterion (4.3) in Step 4 is justified by Lemma 3.4.
It yields an improvement of the objective function value in the
next iteration, i.c.

(4:.4) tk+1 - H(.%‘H]) > Il(m;\) E tk‘.

Now, under the assumptions H1) — H5), a result concerning the
convergence of Algorithm 1 is given.

Turorem 4.1. If

(4.5) B(te) >0 for every natural number I,
then :
1) lim F(t,) = 0,
koo
i) Hm ¢ =V,
k—co

1i1) the sequence (i, yr)) of the feasible solutions for the problem I M M
generated by the parametrical procedure (Algorithm 1) has at least
an accumulating point, and every accumulating point of this se-
quence is an optimal solution of the ' M M problem.
Proof. The conclusions 1) and 7) of the theorem result by Theorem
4 from Ref. [15].

We will show now that there exists at least an accumulating point
of the sequence ((@,y:)). Indeed, since X is a compact set (see, 1)),
there is a convergent subsequence (x; ) of the sequence (). Let us denote

(4.6) ! ' = lim a;,.

k—o00
On the other hand, from the continuity of the point-to-set mapping

T, it results that for every » > 0, there exists a natural number K(r) such
that

(4.-.7) T(®;,) € V(T(x) for all k > K(»),
where
(4.8) V.(T(2")) = {y € R"Ay’ € T(z') such that ly — 9l < r}.

Since T'(«’)is by H3) a compact set, the set V.(T(x")) is a compact
set too.

Therefore, by (4.7), all terms of the sequence (¥s,) belongs to the
compact set V,(T(2')) except a finite number. Then this sequence contains
a convergent subsequence (y jfk)' Let us denote

(4.9) y' =limy;, ;
koo k
(4.10) w;\, = xj’/.k a/nd :[/,: = yj{k_

From (4.6) and (4.9) it results that (2’, y’) is an accumulating point
for the sequence ((x, ¥:)).

4
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Now let us show that («',%’) i3 an optimal solution of the FU M
problem. The continuity of 7' and the assumption I,) imply the closeness
of T (see [3]), whence from (4.6)and (4.9) we get that

(4.11) y' e 1(x).

Alsgo, by the continuity of &, from (4.6), (4.9) and (4.10) it results
that
(4.12) lim A{=, yi) = W', '),

On the other hand, from 42) it follows that

lim (2, yi) =V,
k=00

whence, by (4.10), we obtain :
(4.13) Mx',y')=V.

Now, by T.emma 2.1, the function H (given by (2.9)) is a continuous
function, so we have

(4.14) H(z') = lim H(a}),

A—00

whence, taking into account (4.1) and (2.9), it results that

(4.15) lim H(ax;) = lim h(ay, yi).

koo k—oo

Also, by (4.12) — (4.14), one obtains :

(4.16) Wa',y') = H(2') = min (', ).

yeT(x')

Hence according to Definition 2.1 it follows, from (4.6), (4.13) and
(4.16) that (2',9’) is an optimal solution of the M M .problem. ‘

Now we present a variant of Algorithm 1 in which, by using the
optimality condition from Theorem 3.3, we change the stop criterion in
Step 4.

Algorithm 2

Initial phase :

Step 1. Choose z,€ X and take k: = 0.

Step 2. Find ¢, € B and y, € T(x,) such that

by = M@y, yo) = min k(xg, y).
y€T (%)
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General phase :

Step_ 3. Find_ Zr+; € X for which there exists %' € T(xyy,) such that
(%x+15 #') I8 an optimal solution for the auxiliary max-min problem PA(t,).

Step 4. Find 1;,, € R and y,,, € T(x,,,) such that

livr = W(@pi1y Yrr) = min M(@y,q, ).
yellx,,,)

Step 5. 1) If t,,, = t;, then the algorithm stops. By Theorem 3.3',
ty; = V and (2,4, ¥x+1) 18 an optimal solution for the problem FM M.

w) It 4., — ¢, > 0, then go to Step 3 with k: =k - 1.

It can be easily seen that each of the Algorithms 1 and 2 yields the
same sequence ((x;, y,)) of feasible solutions of the FM M problem. How-
ever the algorithm 2 is more suitable than Algorithm 1 to be applied in the
case of a separable fractional max-min problems, which will be considered
later in Section 6.

In the next section we will give some approximate variants of Al-
gorithm 1, which are more practical from the numerical point of view.

5. Approximate Finile Variants of the Parametrical Procedure. The
parametrical procedure (Algorithm 1) considered in the previous section
generally requires an infinite number of iterations. However, it can be
stoped after a finite number of iterations by using an approximate stop
criterion in Step 4. For instance, Step 4 in Algorithm 1 can be replaced
be the following :

Step 4'. ) If F(t,) < «, then stop.
1) If F(t;) > «, then take k: =Fk -1 and go to Step 2.
In Step 4', « is a given nonnegative real number. To obtain a good
approximation of the optimal solution, « must be taken sufficiently small.

Concerning this approximate variant of Algorithm 1 the following
theorem may be stated. '

TnrorEM 5.1 If the condition (3.16) holds and if « in Step 4/, is
a positive real number, then the approximate variant of Algorithm 1 ends

after a finite number of iterations with an i—optimal solution for the MM

problem.
Proof. Indeed, if we suppose that

(6.1) F(t,) > o for any ¥k,
then, by Theorem 4.1, it follows that
lim #(t,) = 0,
k=00

which contradicts (5.1).
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Hence, there exists a natural number & such that
F(t,) < o

Then, by Theorem 3.4, we have

V —t, < ﬁ,(t]‘,) < &
B g
Hence
V — @, ) < ~g

and by (4.1) it results that (x, ¥;) is an %-opbimal solution f.pr the FM M

problem. . )

The Algorithm 1 (or 2) as well as its approximate variant r}eeds
in Step 2 the finding of an exact optimal solution for an ordinary nonlinear
fractional programming problem (see (4.1)). Also, in Step 3 a max-min
problem (see 4.2)) must be solved. But for these optimization problems,
especially in the nonlinear cases, only approximate solutions can be ob-
tained.

Therefore it is useful to consider some variants of the algorithms 1
or 2 that need in the steps 2 and 3 only approximate solutions with a
prescribed approximation. )

Next we will consider an approximate variant of Algorithm 1,
which needs at every iteration a y-optimal solution for the fractional
programming problem (4.1) in Step 2 and a 3—0[)!}'1}&&1 solution for the
max-min problem (4.2) in Step 3. Here v and 3 are given I}onnegatlve real
numbers, which represent the desired approximations in the Steps 2
and 3 respectively.

Algorithm 3
Step 1. Choose z, € X and take k: = 0.
Step 2. Find y, € T'(x;) such that

(5.2) W 92) — v < min by, ) = H(z,)

3’6T(1’k’
and take ; b
(5.3) te = h(@y, ¥2)-

Step 3. Find ., € X for which there exists y’ € T(w,4+,) such that
(@441, ¥') is @ S-optimal solution for the max-min problem PA(#), that is :

(5.4) Qe Terny YY) + 3 = F(8y),
(5.5) Qe pryy y') — 8 < min (b Buryy Y)-
yET("]H_l)

Let us denote
(5.6) By = qtes Trvrr ¥')-
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Step 4. 1) If B, > «, then go to Step 2 with k: =% I 1.

11) If B; < o, then the algorithm stops.

Next we will derive a sufficient condition for the finite convergence
of the approximate Algorithm 3.

Firstly we obtain an upper bound of the optimal value V of the
problem FM M.

TurorEM 5.2. If the condition (3.16) holds and if

5.7) - B: € o,
then

S
(5.8) iz sk

and (w;, yi) 18 an e-optimal solution for the ' M M problem, where

oc—{—S).

€ = max (Y; 1y LR L

Proof. From (5.4) and (5.6) we have
F(t,) < By + 3,
whenee, by (5.7), it follows that

(5.9) Ft:) < o+ 3.
On the other hand, by Theorem 3.4 we have
@)
(5.10) V<t +° (B’")-

But (5.9) and (5.10) imply (5.8).
In order to prove that (@, v:) is an e-optimal solution of the FM M pro-
blem, we make the remark that in Step 2 of the Algorithm 3, y; is deter-

mined in T(x;) such that

(5.11) k{2, yi) — v < min h(z, ).

’,VET(:I"L.)

From (5.8) and (5.11) we may conclude that (wx,y:) satisfies the
conditions (2.4), (2.7) and (2.8) of Definition 2.2 with

+ 3
e:max(y, i )
p
Hence (2, ¥:) is an z-optimal solution for the FM M problem.

LemMA 5.2. If By > «, then

o — 3

5.12) fpgg —tpg > ————-
( ) s 9 @rs1y Yr1)
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Proof. By (5.5) and (5.6) we have

By — 38 < min ql, Zeay, ¥) < @ty Bryry Yary) =
YeT(r, )

= f(@rs1s Yer1) — e §(@rs1y Yars)s
whence, by H3), (2.2) and (5.3), it follows that

By — 3
(5.13) I gy N— )
G @rr1y Yiv1)
Since B; > o, inequality (5.12) results immediately from (5.13).
THEOREM 5.3. If in Algorithm 3

(5.14) S < a
and if
(5.15) 0 <8 <yglz,y) < o forall e X and y € T(x),

then Algorithm 3 finishes after a finite number of iterations with an c-opii-
mal solution of the I' M M problem, where

o + 8)
p

Proof. Indeed, whenever B, > «, by (5.2) and (5.3) we obtain

e = Iax (*(,

I — v < min h(axg, y) <V,
yeT(1y)

that is
(5.16) < V4v.
On the other hand, from T.emma 5.2, whenever B, > «, we have
N ; — 8 i
bei) — B > e i
9(@ra1y Yier)

whence, by (5.14) and (5.15) it follows
o — 3

[

(5.17) tray — br > > 0.

But the inequalities (5.16) and (5.17) imply that (¢,) must be a finite
sequence. Therefore, there exists a &’ such that By < o. Then the Algorithm
3 stops and by Theorem 5.2, the pair (x, ;) is an e-optimal solution. This
concludes the proof.

Remark. The assumption (5.15) in Theorem 5.3 is satisfied when, for
instance, we assume toghether with I{l) — H5) that Y is a compact set.
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6. Separahle Fractional MAX-MIN Problems. In this section we will
present an adaptation of Algorithm 2 for the particular case of the fractio-
nal max-min problem ¥ M M, when :

(6.1) [z, y) = M(2) + Py), tor all (z,y)e X X Y,
(6.2) g(w,y) = N(z) + @(y), for all (z,y)e X X ¥,
(6.3) T(x) =Y, for all ze X,

where M : X > R, N: X R, P: Y — R, Q:Y — R are given functions.
This max-min problem can be stated as follows:
SFM Find
7 >
(6.4) ¥ = max min Miz) + Ply),
seX  yey N(x) + Q)

We call the problem SIM separable fractional max-min problem,

It we want to apply the Algorithm 2 to the max-min problem SI'H,

ab th((lz L-th iteration the following max-min problem in Step 3 must bhe
sotved : :
(6.5) F@ty) = 1113:{)( min (M(x) -+ P(y) — t:(N(2) + Q).

1€ yeY

~ As a matter of fact, it must found only an 2, € X for which there

exists y' e Y such that (24,4, #') i3 an optimal solution for the max-min

problem (6.5), because the sccond part y’ of the pair (2,5, %) is not used

in the next iterations. Moreover, since the problem (6.5) can be written as

B(t) = max (M(z) — t; N(@) + min (Py) — t: Q) =

reX ey
— max (M(2) — t N(#)) + min (P(y) — t: Q)
zeX yeY

for finding 2., it is enough to solve the following usual maximization
problem : ]
PM(t). Find 2, € X such that
(5.6) M(2pyq) — te N(2pyq) = max (M(x) — & N(2)).
xeX

We consider now for the problem SF M a variant of the algorithm 2,
"wh(;re the max-min problem PA(¢;) is replaced by the ordinary maximi-
zation problem P M(t,).

: Algorithm 4

Step 1. Choose 2, € X and take & : = 0.
. Step 2. Find an optimal solution y, € ¥ for the fractional minimiza-
tion problem

(6.7) 1, — min 21#) + Ply),
ver N(m) + Q)

Step 3. If @ is an optimal solution for the problem PM(2y), then
stop. Otherwise, go to the following step.
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Step 4. Find an optimal solution ., € X for the problem P M(t;)
and go to Step 2 with k: = & + 1.

The Algorithm 4 is effective especially when some supplementary
convexity conditions on the SFAI problem are imposed. For instance,
if M is a concave function, N is a convex function, b is nonnegative over
X %Y and X is a convex set, then the problem P M(t,) (in Step 4) is a con-
cave programming problem, for which there exist efficient algorithms
(see, for instance [1]). Also, the fractional minimization problem (6.7)
(in Step 2) can be reduced under suitable hypotheses to convex program-
ming problems (see, e.g. [11]).

7. Bilinear Fractional MAX-MIN Problems. The bilinear fractional
max-min problem, which will be considered in this section, i3 the particular
case of the max-min problem FM M, where the functions f and g are
bilinear functions of the form:

(7.1) f(m,y) = Aty + d'w + a'y + w' for all (v, y)e XX Y,
(7.2) g(m,y) = wA%y + &% + a®y -+ w? for all (z,y) e AXY,
and X and Y are polyhedral sets :

(7.3) X ={ae R"/Bx < b,

< b w0
(7.4) Y ={yeR"Hy > ¢ ¥y

0

0}.
Tn (7.1) — (7.4) @ and y are variable vectors, whereas A' € Rmx*

(i=1,2), Be Rmr, e R, deR, oeR” (i=1, 2, be R*, sec R’,

w e R (i =1,2) are given matrices, vectors and constants, respectively.
Therefore, the bilinear fractional max-min problem can be stated

as follows:

BFM. Find

A2

- CoaAly - dle el wt
(7.5) 1 = max min ¥ i U
vex yey xdA¥y -+ d*r -+ oy -} w?

The particular case of the problem BFM when A? = 0 and a? =0,
was considered by Belenkii [2].

Suech problems arrise also from the minimum risk approach applied
to the max-min bilinear programming problem (see, [13]). ,

Throughout this section we suppose that X and Y are nonempty
and compact sets and that g satisfies the condition H3). i

Concerning the use of Algorithm 1 to solve the problem BIM we
can make the following remarks

Remark 7.1. Tn Step 2 only an usual linear, fractional programming
problem must be solved. Moreover, from one iteration to other, it changes
only the objective function of this tractional problem (see (4.1)). So, if
a simplex type algorithm is used to solve it, then at &k - 1-th iteration
the optimal solution y, obtained in the previous iteration can be taken
as initial solution. :

Remark 7.2 In Step 3, instead of the auxiliary max-min problem
PA(ty) only an usual linear programming problem (see, e.g. [9]) must be
golved.
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In(.ieed, taking into consideration the relations (7.1)—(7.5), the
nonfractional max-min problem PA(f;), which must be solved in Step 3
is the following : '

(7.6) F(ty) = max min (2(A — t; A2)y + (@ — b d2) & -+

v€X ryeY
+ (@' — tr a®) y + (w' — t, w?)).

_ But, for a fixed element # in X, we get from (7.6) the linear program-
ming problem :

(7.7) By, #) = min ((@(A4" — t; A2)+a'—t; a2) y+(d'—t; d2) z+w' —1; w?)
Y '

subject to:

(7.8) . By > e,

(1.9) y > 0.

Then, by the duality property of linear programming, we have for
every ze€ X :

(7.10) B(ty, ) = max (ev -+ (d' — & d?) & + w' — t; w?)
subject to : L

(7.11) vE < 2(Al — tp A2) + a' — {; a?,

(7.12) v >0,

where v e R is the vector of dual variables.
__ Taking into account the relation (3.3'), it is easily seen that for the
f.md]ng]gr1 -_Ofdl”(t:c) the following linear programming problem must be solved :
Fin
(7.13) F(ty) = max (ev + (&' — 6,d%) = - w' — t, w?)

subject to (7.11), (7.12) and
(7.14) Br < b,
(7.13) z = 0.

Also, if (#', v') is an optimal solution of the problem (7.13) — (7.15),
then x4, = &' is the element in X" which must be determined in Step 3
of the Algorithm 1. So, it is possible to perform the Step 3 only by solving
an usual linear programming problem.

Next let us perform in the bilinear fractional max-min problem BFM
the Charnes-Cooper variable change :

(7.16) w = 0z, z = 0y,

where u € B*, ze R™ and 9 ¢ R. The 1 T
BIL. Find en problem BF M becomes :

(7.17) V = max min (uA'2z 4 6d* u - 6a' z + w! 02)

% 2,0
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subject to

(7.18) Bu — b9 <0,
(7.19) Ez — 0 > 0,
(7.20) A2z 4+ 0d?u |- Oa?2 - w? 02 =1,
(7.21) >0 ¢ 0, 0> 0.

Concerning the problems BFM and BL we can state the following
result.

TaroreEM 7.1. Let X and Y be nonvoid compact sets and let g be a
positive function on X X Y. If (u',2', 0") is an optimal solution for the pro-

'

blem BIL, t‘hren(z;, (;,) is an optimal solution for the BFM problem.

Conversely, if (x',y') is an oplimal solution for the BE M problem, then
(6'x, 02", 0') is an optimal solution for the problem BL, where
1

g(@',y') |
Proof. To prove the first part of the theorem, we observe that for
every feasible solution (u, 2, 0) of the max-min problem BL we have 6 >0.
In the contrar case, it we take 0 = 0 in the constraints (7.18) — (7.21)
of the max-min problem BI, we obtain the following relations :

(7.22) Bu <0,
(7.23) ' Ez > 0,
(7.24) ud?z = 1.

Then, because by (7.21) % > 0 and v > 0, it follows from (7.24),
that (u, 2) is not the null vector. But, taking into account the inequalities
(7.22) and (7.23), it € X and y e Y, then, by (7.3) and (7.4), it results
that

x+iueX, y-+tze¥, for all t > 0,

which is contrary to the assumption that the sets X and Y are compact.
Now, by employing Theorem 1 from Ref. [17], one obtains the first part
of the theorem.

The second part of the theorem can be easily obtained by per-
forming in the BFM problem the Charnes-Cooper variable change (7.16).

Hence we observe that by Theorem 7.1, the max-min problem BL
having a nonlinear quadratic objective function and nonlinear constraints,
can be solved by using the pﬂ-t'a-met-rii:a.l Algorithm 1 (for the max-min
problem BFM), ie. by solving only linear programming problems (in
Step 3) and linear-fractional programming problems (in Step 2).

Now we consider an example of a fractional max-min problem with
linear separate constraints, for which the variable change method. seems
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to be very efficient. Thus we will show that this problem can be solved

by linear programming.

The fractional max-min problem that we deal with is :
L. Find '

max min (mA]/ T dp + ay ot w -} co;) ’

xeX yey min (hty - 7%)
feK :

where X and Y are polyhedral sets given b : 7
icre gl . poly sets n by (7.3) and (7.4), whereas
AR deRacR" Ile R"re RieK ={1,...,k}) we R are gi
ven maftrices, vectors and constants respectively.

Next we suppose that

G(y) =min (M'y - 7') >0, Vye Y.

ek

Now let us perform in the problem P the variable change :
z = Oy,

where ze R” and 6 e R, 0 > 0. Then we oct O
P1. Find ’ get the problem :

(7.25) max min (z4z + 0do + az + w0 4 cw)

reX z,0

where 2 and 6 are subjected to :

(7.26) Tz — e > 0,

(7.27) min (h'y + 70) > 1,
iek

(7.28) 220, 06 >0.

Concerning the problems 2 and P1 we can state the following result.

_ TuwsoreM 7.2, Let X and Y be nonvoid compact sets and let G be a
positive function on Y. If (2', 2", 0') is an optimal  solution for the problem

I4

. , 2y ool )
P1, then ( @, kﬁ’) 18 an oplimal solution for the problem P.

_ Proof. The proof can be easily obtained by using similar arguments
as in the proof of Theorem 7.1 (see also Refs. [57], [8] and (1.

We remark that the problem P1 is equivalent to a bilinear max-min
pIoblem with hn.ear constraints. This fact results since the nonlinear
constraint (7.27) is equivalent to the system of linear constraints

(7.29) Wet7r0>1,iek.

Let P2 be the max-min problem obtained from P1 b ing
. . oble . y replacin
the constraint (7.27) with (7.29). P2 is a bilinear max-min problem witl%

separate li.near constraints and so it can be solved (see [9]) by linear
programming. ‘
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