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Abstract. We prove a Korovkin-type theorem on approximation
via generalizations of Boolean suin operators in a space of B-continuous
functmns which are periodic in a certain sense. As an application we treab
the problem of uniformly approximating B-continuous functions by tri-
~ gonometric pseudopolynomiials.

1. Introduetion. Tn recent years there has been some interest in
the approximation of bivariate functions: by Boolean sums of parametric
extensions of univariate approximation operators, especially in connection
with problems in the field .of Computer Aided Geometric Design ; cf. e.g.
the corresponding sections in [8] and the references cited there, as well

as the discussion in the recent paper [1]. If the underlying univariate
operators define (algebraic or trigonometric) polynomial approximants
the corresponding bivariate approximants are aloebl(mc or trigonometric
pseudopolynomials, i.e. of the form

Y Ady)- @ + Y Bia)- g,
i=0 L =0

2m s 2n
a.1) or Z Aiy) () - E Bj(x) - 7(y),
§=0 i i T i=0
o . ; Sint + 1z if 7 is odd
: 2
() = . ;W
cos—;-z‘ if i is even

where A4;, B; are univariate coefficient functions which should be penodlc
in the tlloonometrlc case.

In most investigations the approximated h]nctlon‘s are assumed to
be continuous. However ‘the considered approximation processes are often
meaningful for a bigger class of functions, namely for so-called B-conti-
nuous funetions introduced by K. Bogel in [4] (cf. also [5], [6]).
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" A‘real valued function f on Dc[R2s called B-continuous, if for
every (@, y) € D we have- ALY

lim A, ,f(»,y) = 0,
(0] (x,7)
where A, f(#, y) : = f(m, y) — f(z,v) — f(u, y) = flu, v).

In [2] a Korovkin-type theorem on approximation in the space
B(I?) of B-continuous funetions defined on the unit square I2 with certain
generalizations of Boolean sum operators was proved. ,

In this paper we give an analogue for the approximation of certair
“periodic” functions satisfying 5 N -

(12) Au,vf(m +_2n7 7/ —IL' 275) o Au‘,,f(w, K/ )

for each (x, 9), (u, v) € [R2

Such functions we call B — 2n-periodic, and we denote by B,
the space of all real-valued B — 2r-periodic and B-continuous funetions
on [R2

Before turning to our Korovkin-type theorem for B,. in Section 3
Wwe give some results about the structure of this space in Section 2. In
Section 4 as an application the problem of uniformly approximating
elements of B,, by trigonometric pseudopolynomials is considered.

2. Some properties of B—2mn-periodic funetions. It is clear that
B, is a real vector space with the usual pointwise definition of addition
and scalar multiplication. However, B,. is not closed under function
multiplication. The product of two B,. —functions need neither be B-
conbinuous nor B, -periodic as can be seen by considering functions
of the type f(z, y) = g(2) + h(y) which arc always in B,.. Such functions
we will call B-constants as phey are “coustant’ pseudopolynomials with
m=mn =0 in (1.1).

- Also, fe B,. does not imply [f| € B,,.. Turning to the absolute value,
again neither preserves B-continuity (consider an obvious modification
of a corresponding example for the B(I?)-case in [1]), nor B-2r-perio-
dicity as shows the following f

Bzample 2.1. Let f:R? — R with

(2.1) fw,y) = (& — 2%, 7) sin gy -+ 2k,,
where &, € Z such that » e [2k,r, 2(k, L)n{. We have

f(ff’”a f’/) —'f($, v) = (CU s 2"7.7;7'5)(Sin Y — sin ’U) =
= (#-+27—2(k,+1)7) (sin y — sin v) = f(z + 2r, ) — flo - 27, v)

for (x, ), (4, v) € R Since f is 2r-periodic with respect to the second
variable it follows that

A, flz,y) = A, , flo - 2,y + 27)
for all (z,y), (u, v) e R2.
Furthermore

oS 9)| = % — u 4 2(k, — k)| - |siny — sin v] —+0 for

(u, v) — (2, ;
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ie. f is B-continuous. (One can even check that |f| is B-continuous.)
Thus fe B,,. But we have for example

j _n,lrv- ‘l— f(—m0)=—m=
|f(. 2) |

and

].f(n, %)'— |y O = ,

from which it follows that

vl T o br
Ayl Sl (_ 71'7—2—) # Au,ol 1] (Tca—g" )’
ie. |f] is not B,,-periodic. 1 .
The space Oy, g, of all bivariate continuous and 1'pal—valued functions
which are 2zn-periodic with respect to both variables is a proper sub_spa}(lze
of B,, as can be shown again via the example of 'B—consta.nt.s or via the
preceeding example : A B, -function in general neither satisfies thedcon;]
tinuity nor the periodicity properties of Ogn 2n-functions. It even need no
be bounded. ’ . : »
The situation is different for the associated difference function Auof
with fixed (u, v) € R% For fe B,, this function is bounded and,Zn;—.Il)grilodlc
with respect to both variables as the following two lemmas will show.

LeMMA 2.2. If f is B — 2n-pertodic, then
t2.2) ol A paimpy e f(@ - 2mm, y + 20m) = Ay, f(2 Y)
for every (z,¥), (u, v) € R where h, k, m, and n are integers.

Proof. There are six steps in tlh_etproof. " N

(a) We prove (2.2) when h =k =0, m = 1, and = is a positive
integer. This iy done by mathematical induction.

If » =1, (2.2) is true by hypothesis. Now we assume that

Auvf(w+ 27'57 Y ‘l‘ 2n) = Auv,v f(m; f’/)
for every (z,y), (Iu, ) € R2. Morebirér, we have

CAgyrzan f(@ A+ 27'5;?/ 4 20w + 27) = Auyromn f(#, y + 2nm) = 0,

and adding these two equalities we find
Ay fl@ F 21y y - (20 4 2)m) = By (5 9)s

'i.e. the desired result. . ’ _
(b) In a similar manner we can prove, using step (a), that (2.2)

is true for b = k = 0, and positive integers m, ne » N
(¢) Now we prove (2.2) when h =%k = 0, m = 0, and # is & pqs1fo1v§
integer. 45 A
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" +We have \ I i -
Au,vf(wy y -+ 27”‘) s Au,vf('ﬁ'z ‘?/) -+ Auvf(wy:’/ + 2"”‘?)-: ‘

But, using agaw (a), we may write
Au,yf(.w7 ¥+ 2"7‘7) - Au,yf(“‘ — 2n + 2771 ¥+ 27”5) = Au,yf(a; o 275! y) = 0.

(d) Similarly, we can prove (2.2) for I — k — 0, + =0, and m
2 positive integer.

Hence, in these four steps we proved (2.2). for h = ¥ = 0, and m, n
non-negative integers, ’ ‘

(e) Now we prove (2.2) when h, kym, n are non-negative integers.
Indeed, using the above steps, we have

At¢—l—2/t-1v,v»l~2kn: f(x +‘ 277“7, Yy ‘{" 2'"/71:) == Au-l-Zim,v«F?kn:f(m)/i )
. .A,‘,"'ayf(u RE 2.}”:’:1) + 2ICTE) . Al‘,'Jf(”’! fu)': Au,vf(w7 f’/) -

(f) The equality (2.2) is also true if some of the integers h, k, m, n

are negative. This follows easily from (e) because the last equalities are
valid for every (=, y),(u, ») € R2.

Thus the proot is' complete. I ; :

Lemma ' 2.2 'is a generalization of the periodicity property of A, ,f
stated above. The boundedness result which was given in [3, Lemma] for
the B(I?)-case we formulate in

LumyA 2.3. If fis an element of the space B, then there is a positive
number M = M(f) such that for every (w, Y) and (s,1) from [R2 we have

' Aﬁ;‘f‘f(mv ?/)l < M.
Proof. Any real number « can be written in the form
U = u]_ ‘{— 271:11,2

where u, e [0, 2r[, and u, is an integer( the integral part of 2i
1 . T

). Using
this decomposition for #, y, s, and ¢, and Lemma 2.2 we obtain

(2.3) A flo,y) = A31+2"521tl+2"lﬂf(x1 + 2nwy yy, + 2ny,) = As 1, [y, Y1)

Now, Lemma 2.3 follows from (2.3) and from [3, Lema]. |

CorOLLARY 2.4. Hach f e B,, may be writien as a sum of a bounded
B-continwous function which is 2rn-periodic with respect to each wariable
and a B-constant. |

Proof. We may write TR O F
f(w1 y)=A ¥ (2,9) ‘[‘f(mm ?/)‘F‘ f(w’ yo) — J(@, Yo)
with fixed (,,¥,) € R2. '
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v Aecording: to Lemma 2.2 and Lemma 2.3 - the function A, f is

2n-periodic with,respect to cach variable and bounded. A, ,, fis.also B-conti-

nuous sinee Ay (A, N2 9) = Auo fl2, 7)1 o ; "
Remark. It is not true that fe B,. can be written as a sum of

a Oy, ,.-function and a B-constant. Compare the example of a B—continlllous‘

function which is not continuous #p to a B-constant in [6]. R
The preceeding considerations enable us to show

LEMMA ' 2.5.. Each: f€ By 18 wniformly ' B-continuous on  [R% i.e.
Jor each e >0 there is a 3(e) >0 such that for: every (x,y), (i, v)e RE
with |z — u] < 3(¢) and |y — o] < 3(e) we have
(2.4) 1Aus flay )| < & . N :
Proof. Because f is B-continuous on [R? it follows that f is also B-conti-
nuous on [0, 3=]? = [0, 3n] X [0, 3=], and then by [6, Satz 7] the funct@on
J is uniformly B-continuous on [0,3x]2. Thus there exists a function
3,(e) >0, ¢ >0, such that (2.4) is satisfied for every («, ¥)s(u, v) € [0,37]2
with |z —u] < §(¢) and |y —o| < §,(&). :

We now define the function 8(g) from the definition of uniform
B-continuity of f on R* by 8(¢) = min {m, 8,(¢)}, and show that (2.4)
holds for every (z, y),(u, v) e R* with |# — u| < 3(¢) and Jy — v| < 3(e).
Because 3(e) < w, we can choose I, 1€ Z such that

© =, + 2k=, ¢, € [0, 3n];
U = U, | 2km, Uy € [0, 3n];
Y =1y I Zin, ¥, €[0,37];

v = v; + 2=, v, € [0, 3%].

fos ; ; i

Then ! ‘ - ,
o — ] = |2 — u| < 8(e) < 8(e) and oy — 0] = ly — o] <
< 3(e) < §,(e).

Because (, #;),(uy, v,) € [0,37]2 and f is uniformly B-continuous on
[0, 3= % we obtain |Ay,,., f(#;, ¥;)| < ¢. Using this inequality and Lemma, 2.2
we get

| B0 f(2, ) | = [0, f(y 91) | < e o
Now the proof is complete. §

3. A Korovkin-type theorem for approximation in B,, with génerali-
zations of Boolean sum operators. Having. supplied the necessary auxi-
liary results in Section 2 we may now proceed similarly as in the proof.
of the Korovkin-type theorem in [2] to obtain our main assertion.

We first prove the following

TemmA 3.1. Let fe By, be arbitrarily chosen. For every positiwl
number e there are two positive numbérs ‘A(e) = A(e, f) and B(e) = B, f)
such that for every (z,y),(s,1) € R? we have _

1A, fl@, 9] < % Ay B(s)%ﬂ,

'
B
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Proof: Liet ¢ be a given positive real nu ' i
P _ mber. Because f iy unif
B-continuous on.[R? by Lemma 2.5 there exists a 3(e)e ](),f 7] s&l(:hm:}?;‘}tr

for every ' i ;
= hawe} (%1 Y1 )s(%3, ¥2) € R? with |, T wa| < ¥(e) and |y, — y5| < 3(e)

(3.1) [ ADsyye [(@18) ] < ‘3%‘

Given (2, ¥),(s, t) € R we choose &, e Z ;
: such that for (2, y') =
= (2 4 2kn, y + 2Ix) there holds , W L

0" — sl <m [y —t] <
We distinguish the following four situations
(1) la" —s[ < 3(e), [y" —1t[ < 3(e);
(i9) [&" — ] >38(e), y" —t] < 3(e);
(i0d) |&" — 8] < 3(e), ly" — ¢t >3(e);
(iv) |a@" —s| > 3(e), |y —'t] > &(e).

In case (i), using (3.1), we have

(3.2) | S’y ] <
In case (ii), there holds

. 3¢ ==
sm—% < sinu-

So we have
gin? gard
(3.3) s =
., 8(e) !
sin
2

Using Lemma 2.3 and (3.3) we find that

., B —8

. gin? .

sin?2 —8(5) 2
2

(3.4) 1A, fl2', y') | <

In the case (iii) and (iv) we obtain in a similar manner

M LY — 1
TIG) - 8in?2 ’
sm27 2

(3.5) s fla, y)| <
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and
M o —s .,y —1 M LLa — 8
l As,tf($’7 ?/’)i < ———5(5‘)' - sin?- —- 8in? = 9 = —__'S_{Ei « sin? ————-
sint —~ B sin! —~ 2
2 : 2
3.6)

(Consequently, employing (3.2), (3.4), (3.5), and (3.6) we have the following
inequality ;

(B ] <t /"—M;s(_.)*' Mé”@ csin2 L2y
- kSinz - sin?
4 2
| M e
PRE A Tl
(3.7) + Lt

In consideration of Lemma 2.2 and of the periodicity properties of the
sine function we may substitute ' by » and y' by ¥ in (3.7) which completes
the proof. 1

Now we are ready to show

TrwoREM 3.2. Let (Lpa), myn €N, be a sequence of positive linear
operators transforming bounded By.-functions which are. 2r-periodic with
respect to both variables into functions of R® and satisfying

(1) Lmale; 2, y) =1, where e(s,t) = 1.
For fe By, and (x,y) € R? let

U f(@y9) 2 = I a3 9) + [y %) — f3 %) 5 25 )
If the conditions |
(13) L a(y; @ y) = 80 & + U n(%) Y)s
(191) L a(pa; @, %) = siny -+ vm (2, ¥);
(i0) Lima(y; @, y) = €08 @ + tna(@) Y);
() Lna(Pa; @, y) = €08 ¥ -+ wna(@) Y),

where @,(8,1) 1 = 8in 8, g8, 1) : = sin , Py(s, 1) 1 = €08 8, (8, §) 1 = cos ¥,
and Umny Ompy tmny ANE Wi n CONVETYE to zero uniformly on R® as _m,w
approach infinity, are satisfied, then for every f€ Bay the sequence (Unmuf)
converges uniformly to f on R*.

Proof. Let f e By, and (2,9) € [R2. Because of condition (i) we may
write
(3.8) Un o f(2 y) = fla,y) — Lm,n(Az,x)f§ @y Y)- .
By the results of section 2 (cf. especially Corollary 2.4 and the proof
thereof) we see that Un ., 18 a well-defined linear operator on B,
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_ _Furthermore, taking into account the positivity of I
implies

[ f(, .7/) i Uf{'," f(a%7 )= Hla’)z( {-’LHI,H(A;&;y’f;?w‘y :[/)) Lllnﬁn(—Aa y'f; x, y)} L

< L‘AH i .'—i. ‘ i 2 w . | : i y _* ’
' ( 3 -+ A(e) sin 5 -+ B(¢)sin? 5 b g/)
for ‘éach positivé nuimber e 7 0 00

(v) from the statem_ent of the theorem we arrive at the estimate
@) U fla, )] o

c 1 3 h,
— o . Q . 4
< . + > e(e) - {2 CO8 & - Lf,zg,l((pl HEA g/) — SN & Loy u(y 5 2, ) —

— €08 Y+ L (Y35 @, 9) — S0 g+ Loy (3 10, 4 )}

€ 1
Ty e(e); {008 & ~Lu,u(@, y) + sin & - Ynn(29) +
+ €08 Y+ W (7, y
where o(e) = max{A(e), B(e)}. A AR SPEORE W W
B thtmg m and.x-tend to infinity yields;the desired result. ]
5 ARS8 0 #0E Yi ma s 8 Rt g teteaes
(a) A Korovkin-type théorem for the convergence ‘of ‘the oty
- ! s e a The oper s B
(L) themselves in the smaller space €, ,: can be found in. [13 'J.P' i
_(b) If we choose L, , in the above theorem as a product of the para~
metric extensions of two univariate positive linear operators with suitable
fi"maims’.tf.he" U, is the Boolean, sum of these univariate operators. Thus
it ;s Justified to call our operators a generalization of Boolean sum ope'-
rators. ORI s TR
(¢) If equality (i) of the theorem does not hold, the i :
. ) 4 © G a0es ; ! nen equation (3.8
is not true. It one replaces (i) by (i)' Ly, ,(e; @, ) g + o 2(4;, ) 19:8)
then the a.bovt? method of ‘proof allows only . the eoneclusion , that
we have pomftwm(la cgnvergencg to fla, y) for all (z,y)eR? if wn.(a, 7)
converges uniformly to zero as ‘m, n tend to infinity (cf. the remiark f -
ing the main result in [2]). ’ & Prsiiiskialon
(d) Note that with the same -argument as in the proeof of Theorem
3.2 a,lso’f.or t«h_cK:Urqx__rkiu—t_\,q)e,theorems in [1]and [2]it would be sufficient
to require that, Ly, is defined for bounded B-continuous tunctions;:
~ (e) The class of operators defined for &ll B-continuous functions’
even with the additional assumption of ' boundédness, is - somewhat’
restricted. For example Theorem 3.2 may not directly be applied to such’
important operators as ‘integral convolution, operators since a -B-conti-
nuous function need not be measurable. We remark however, that it is:
no problem to foru;u!ate, theorems similar to Theorem 3.2 for operatorsl
with some o'?h{i{: domains, e.g. spaces of (hounded) measurable B, -functions’
or spaces’ oft (ly, 4 -funetjions, The same remark again : lFes t B,
Korovkin t-])cergmz-in [1] and [2]. i WS 10, they

) -+ sin Y- 7-51n.,71(¢7 3/)}7 - [

I

m uy Liemma 3,1,

Carrying through some operations and applying Ithe rela,tim;s (i) to}
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%4 Approximation with trigonometric pseudopolynomials. While it is
clear that functions in €y, .: can be approximated arbitrarily well by
functions of the form (1.1) in the uniform norm, this fact is not so-ebvious
for the larger space B,.. ; ‘ . e N e 3 o

However, it can be obtained as'a consequence of Theorem 3.2. The
idea is to take the Boolean sum of parametric extensions of univariate
polynomial approximation operators as pseudopolynomial approximation
operators. This kind of procedure was also used in [2] to prove an’ appro-
ximation theorem for B-continuous functions by algebraic pseudopoly-
nomials. While the underlying approximation problem was not new in
the algebraic case (cf. the references in [2]), to our knowledge we are
the first to. consider the -corresponding trigonometric problem. i

In the trigonometric case the best-known examples of univariate
polynomial approximation operators are of integral type so that the Boo-
lean sum would only be defined on a subspace of B,.. But we can also
use suitable discretely defined operators which are defined for all real-va-
lued functions. | e w13t | ;

, Before considering, any special situations we look ‘at two. arbitrary
discretely defined and constant-reproducing 'positive:linear operators Ly
and L,, i.e. operators given by ST ST : !

Lm(f;;w') :Z ftw:) - Pni,i.(-’l?.),-
(4.1)

[

where i P (@) =Y, €us(y) = Lfor all ’"7 t ;md. all nYER, and
/=0 j=0 oy
Pni(®) > 0 for 0 <4 < mand all 2€R,

gus(y) > 0 for 0.<j<mandall yeR.

Now the tensor product Ly, , — LzoLY, where L =Ly acts on the bivariate
function: f(x, %) as if y is a fixed parameter, and L} = L, acts on flw, y)
as if « is fixed, is a positive linear and: constant-reproducing operator
defined for any function f : R*— R. The operator U, defined.in Theorem
3.2 in this case equals the Boolean sum L., = Li, @ Li(cf. Remark 3.3(b)),
and the conditions (ii)—(v) in Theorem 3.2 may be replaced by the con-
ditiOIlS & SRt} i

(i#") (s @) = sin & -+ tn(2),
(#13") Lu(9;9) = siny + o(y),
(i0) Ln(5 @) = €08 @ + tn(®),
(@) In($;y) = cosy + wa(y), itghging, i ,
where ¢(z) : = sin 2, (2): = cos 2, and Um, tm, Vs, W, CONVErge to zero uni-
formly on R as m and » approach infinity. TR STRTo AT .
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The preceeding discussion yields

_LEM.MA 4.1. If the sequences (L, )mem, (f},l),,em-of positive linear operators
are guoen as in (4.1), and if Lno — ¢, L, — ¢, Ly = 4y Ly § — § uni-
Sformly on R, then the operators U, m,» CONStructed on the basis of Ly, =1L LY
have the property that (U, . f) converges uni formly to f for each fe B,,, as -n:
and n tend to infinity. | ' S

To obtain the result announced at the beginning of this section weo
can now use for instance a sequence of operators (I,) of the form "

I (f ) D Nu+2
HLf;2) =—— ¥} t"n 'q)nt-.n~
50 =y B M) Oultyn — 0)

h 2kr e i . : ! :
where 1, , = M’ 7% =1,2, ..., N, 4+ 2, and &, is a nonnegative
cosine polynomial of the form

& 1 Ny d
(I)n(w) e ?'*‘ Z Py, COS v, lim Pre = 1.
=1 %00

Examples of such operators can be found e.g. in [7]. As other rather
new references for discrete linear polynomial approximation operators
we cite the papers [9] and [10].

Theorem B in [7] shows that X, reproduces constants, and that
K, f converges uniformly to [ a8 » tends to infinity for all fin the space of
(univariate) continuous, 2z-periodic functions, i.e. especially for the
funetions sin 2, cos #. ’

Now consider the Boolean sum operator W a defined by

TV_mlvn f((vy 7/) = (I(:n @ Ifg)f(“’} ?/)
Nmm+2 Np+2 - .

4 ‘
L (Nm + 2)(Nn + 2) k§=—‘1 hZ=1 [f(”’ tlrz’n) + f(tkl’m’ ?/) il f(t’ﬁ,m’ t’fz,")]

) (I)m(tk];-m L ./L') . (I)n(zhz,n =, y)

The definition of K, and the results cited above show that W,,, fis a tri-
gonometric pseudopolynomial and that W, , satisties the assumptions of
Theorem 3.2. Thus we have

- CoroLLARY 4.2. If f€ B, then (W, , f) converges uniformly to f on
R?, t.e. for each f€ B, there exists a sequence of uniformly approvimating
rigonometric. pseudopolynomials. § . (i i
We are now interested in the question whether it is possible to get some
additional information on the coefficient functions of the approximating
pseudopolynomials in Corollary 4.2. It is clear that it i possible o chooge
continuous’ coetficient functions if the approximated function f is conti-
nuous. Moreover, if f is bounded, also Wy, » fis bounded, and the bounded-
ness of a pseudopolynomial is equivalent to the boundedness of its coeffi-
cient functions. For the trigonometric case we can show this fact similarly
as was done for the algebraic case in [14].

Bounded pseudopolynomials are also called Marchaud pseudo-

polynomials after. A. Marchaud who first éxamined them in (113, [12].
Since the limit of a uniformly converging sequence of bounded functions
is still ‘bounded it is clear that a general fe B,, cannot be approximated
by (trigonometric) Marchaud pseudopolynomials.
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However, in view of Corollary 2.4 it actually suffices to consider
the approximation problem for bounded B, -functions: We first appro-
ximate the bounded part of f by a Marchaud pseudopolynomial and then
add to it the B-constant part of f which is obviously a psendopolynomial,
too. If we call the sum of a Marchaud pseudopolynomial and a B-constant
a B-Marchaud pseudopolynomial we have 5

CorROLLARY 4.3. Hach fe By, may be uniformly approvimated by o
sequence of B-Marchaud pseudopolynomials. |

Note that as an extension of the results in [2, Section 4] a similay
assertion can also be proved in the algebraic case.

5. Concluding Remark. A natural continuation of the considerations
of this paper consists of quantitative versions of Theorem 3.2, similar
to the quantitative version of its algebraic analogon in [1]. Statements of
this type will be contained in the doctoral dissertation of the third author.

The authors are very grateful to Prof. Dr. H. M. Gonska for his
kind help during the preparation of this article.
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