#### MATHEMATICA — REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

# L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 17, Nº 1, 1988, pp. 29-32

a - 13 1 M. M. M. M. Lydresser of besser of M. B. Tor senior M. M. M. M. M. S. - W.

You every in a Mark Marky William has of ganguality 1848.

resort of the a first basis of M and M and horis and M

corners the full system confirmation of the second forms and the bird for second

## AN ALGORITHM FOR DETERMINING THE BASES OF A REGULAR MATROID

ÐĂNUT MARCU (Bucharest)

The regular matroids mark an interesting half-way stage between the matroids corresponding to graphs on the one hand, and the binary matroids, corresponding to chain-groups over GF(2), on the other (see [1]).

In this note we give a matrix algorithm for finding all bases of a regular

matroid.

The terminology used in this paper is that of [1] and [2]. Let E = $= \{e_1, e_2, \ldots, e_n\}$  be a finite set and M a regular matroid on E whose rank is r. We shall denote by  $\widetilde{W}$  the weakly representative matrix of M. If S is any subset of E we define  $\widetilde{W}(S)$  as the submatrix of  $\widetilde{W}$  consisting of those columns that correspond to members of S. If |S| = r it may happen that  $\widetilde{W}(S)$  is a diagonal matrix, that is, the diagonal elements are all nonzero and the nondiagonal elements are all zero. We then say that  $\widetilde{W}$ is in diagonal form with respect to S.

Let  $\widetilde{W}$  be a weakly representative matrix of M diagonal with respect to a subset S of E. It may happen that  $\widetilde{W}(S)$  is the unit matrix. In this case  $\widetilde{W}$  is a true representative matrix of M (see [1]) and is called standard representative matrix of M associated with S.

THEOREM 1 (W. T. Tutte, [2]). If W is a standard representative matrix of M, then W is completely unimodular.

THEOREM 2 (W. T. Tutte, [2]). Let W be a standard representative matrix of M and B a subset of E. The determinant of W(B) has one value 1 or -1 if B is a basis of M and 0 otherwise.

By standard results of linear algebra the property of being a representative matrix of M is invariant (see [1]) under the following "elemen-

tary operations":

O<sub>1</sub>. Permuting two rows (or columns).

O<sub>2</sub>. Adding to one row (or column) a multiple of another by 1 or

 $O_3$ . Multiplying a row (or column) by -1.

Let  $\widetilde{W}$  be any weakly representative matrix of M and S a subset of E of r elements. Then we can find a standard representative matrix of M

31

URDANI AT TRANSPORTATION AND ARTHUR associated with S if and only if  $\widehat{W}(S)$  is nonsingular (see [1]), i.e., by theorems 1 and 2, if and only if S is a basis of M.

Let  $B_0$  be a fixed basis of M and  $k \leq r$  a nonnegative integer. We shall denote by  $B(M, B_0, k)$  the set of bases of M for which  $|B_0 - B| = k$ for every  $B \in B(M, B_0, k)$ . Without loss of generality let  $B_0$  be  $B_0 =$  $=\{e_1,e_2,\ldots,e_r\}$  and W the standard representative matrix of M associated to  $B_0(W)$  can be obtained using  $O_1-O_3$ ). Thus W is of the form

$$(1) W = [I_r][W_{r,m}]_{r} + \dots$$

where  $I_r$  is the unit matrix of order r and m = n - r. Let  $i \in \{1, 2, ..., r\}$  and  $j \in \{r+1, r+2, ..., n\}$ . The expansion of det  $W[(B_0 - \{e_i\}) \cup \{e_i\}]$ , using the rows in  $W[(B_0 - \{e_i\}) \cup \{e_i\}]$ , shows that det  $W[(B_0 - \{e_i\}) \cup \{e_i\}] = W_{ij}$  (see (1)). Therefore, by theorems 1 and 2, we have:

(2)  $(B_0 - \{e_i\}) \cup \{e_j\} \in B(M, B_0, 1)$  if and only if  $W_{ij} \neq 0$ . Let  $1 < k \le r$  be fixed,  $g_i = e_{r+i}$ , i = 1, 2, ..., m and W partitioned as follows:

$$W = \begin{bmatrix} I_k & O_{k,r-k} & W_{k,k}^a & W_{k,m-k}^b \\ O_{r-k,k} & I_{r-k,r-k} & W_{r-k,k}^c & W_{r-k,m-k}^a \end{bmatrix},$$

where  $O_{pq}$  denotes the null matrix with p rows and q columns and  $W_{pq}$  denotes a submatrix of W with p rows and q columns.

Interchanging the columns corresponding to  $e_1, e_2, \ldots, e_k$  with the columns corresponding to  $g_1, g_2, \ldots, g_k$  respectively, we obtain the matrix:

$$W' = \left[ egin{array}{c|c} W^a & O_{k,r-k} & I_k & W^b \ \hline W^c & I_{r-k,r-k} & O_{r-k,k} & W^a \end{array} 
ight].$$

Obviously, the matrix  $\begin{bmatrix} W^a & O_{k,r-k} \\ & & \end{bmatrix}$  is nonsingular if and only if  $W^a$ with the massive production of  $\mathbf{W}^{o}$  ,  $[\mathbf{I}_{r-k,r-k}]$  define [0,M] , solutions

is nonsingular. Hence, by theorems 1 and 2, the set  $\{g_1, g_2, \ldots, g_k, e_{k+1},$  $\{e_{k+2},\ldots,e_r\}$  is a basis of M if and only if  $W^a$  is nonsingular. Therefore, for obtain all bases of M by replacing  $\{e_1, e_2, \ldots, e_k\}$  in  $B_0$  we must find all nonsingular square (of order k) submatrices of the matrix

$$\widetilde{W}(e_1, e_2, \ldots, e_k) = [W^a \mid W^b].$$

 $\widetilde{W}(e_1,\,e_2,\,\ldots,\,e_k)=\lceil W^a\mid W^b
ceil.$ It is easy to see that  $\widetilde{W}(e_1, e_2, \ldots, e_k)$  is a weakly representative matrix of the minor  $M(e_1, e_2, \ldots, e_k) = [M \cdot (E - \{e_{k+1}, e_{k+2}, \ldots, e_r\})] \times (E - \{e_1, e_2, \ldots, e_r\})$  $\ldots, e_k$ ) of M. By [1],  $M(e_1, e_2, \ldots, e_k)$  is also a regular matroid and the columns of every nonsingular submatrix of order k of the matrix  $\widetilde{W}(e_1, e_2, \ldots, e_k)$  corresponds to a basis of  $M(e_1, e_2, \ldots, e_k)$ . Obviously, the union of every basis of  $M(e_1, e_2, \ldots, e_k)$  with the set  $\{e_{k+1}, e_{k+2}, \ldots, e_r\}$  is a basis of M. Thus, for obtain all bases of M by replacing  $\{e_1, e_2, \ldots, e_k\}$ in  $B_0$  it is sufficiently to find all bases of  $M(e_1, e_2, \ldots, e_k)$ .

It is also easy to see that using  $O_1 - O_3$  the matrix  $\widetilde{W}(e_1, e_2, \ldots, e_k)$  can be transformed in a standard representative matrix of M denoted  $W(e_1, e_2, \ldots, e_k)$ . We shall denote by  $B(B_0, e_1, e_2, \ldots, e_k)$  the set of all bases of M obtained by replacing  $\{e_1, e_2, \ldots, e_k\}$  in  $B_0$ . Summarizing we have the following

### Algorithm

Step 1. Starting with a weakly representative matrix W of M and with a basis  $B_0$  we obtain (using  $O_1 - O_3$ ) a standard representative matrix W of M associated to  $B_0$ .

Step 2. We obtain  $B(M, B_0, 1)$  according to (2).

Step 3. For every combination of k > 1 elements  $\epsilon_{i_1}, \epsilon_{i_2}, \ldots, \epsilon_{i_k}$  with  $1 \leqslant i_1 < i_2 < \ldots < i_k \leqslant r$  we find  $B(B_0, e_{i_1}, e_{i_2}, \ldots, e_{i_k})$ . For determining all members of  $B(B_0, e_{i_1}, e_{i_2}, \ldots, e_{i_k})$  we shall consider all the nonsingular square (of order k) submatrices of the matrix  $\widetilde{W}(e_{i_1}, e_{i_2}, \ldots, e_{i_k})$  obtained with the columns of  $W_{r,m}$  and the rows of W containing 1 in the column  $e_{i_*}, \ s=1,2,\ldots,k$ . For the simplicity, the matrix  $\widetilde{W}(e_{i_1},\ e_{i_2},\ldots,e_{i_k})$  can be considered as a weakly representative matrix of  $M(e_i, e_{i_2}, \ldots, e_{i_k})$ for which we reconsider the problem to finding all bases by repeating (if it is necessary) the steps 1, 2 and 3 starting with the step 1. To each basis obtained for  $M(e_{i_1}, e_{i_2}, \ldots, e_{i_k})$  corresponds a basis of M by adding  $B_0$  $-\frac{1}{2}\{e_{i_1},e_{i_2},\ldots,e_{i_k}\}.$ 

REMARK. If, for a k > 1, we denote by I(k) the set of all combinations as the form  $(1 \le i_1 < i_2 < \ldots < i_k \le r)$  we then have:

$$B(M, B_0, k) = \bigcup_{\{i_1, i_2, ..., i_k\} \in I(k)} B(B_0, e_{i_1}, e_{i_2}, ..., e_{i_k}).$$

It is also easy to see that the above algorithm does not produce duplications and generates all bases of M.

Worked Example. Let  $E = \{a, b, c, d, e, f\}$  and M a matroid on Ewhose family of circuits is  $C(M) = \{\{b, c\}, \{a, b, d\}, \{a, c, d\}, \{d, e, f\}, \}$  $\{a, b, e, f\}, \{a, c, e, f\}\}$ . It is easy to check that the following matrix

is a weakly representative matrix of M. Let  $B_a = \{a, b, e\}$  be a fixed basis

Step 1. Using  $O_1 - O_3$  we obtain the following standard representative matrix of M:

$$W=egin{array}{c|ccccc} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \ 1 & 0 & 0 & 1 & 0 & 1 \ 0 & 1 & 0 & 1 & 1 & -1 & 1 \ 0 & 0 & 1 & 1 & 0 & 0 \ \end{array} 
ight.,$$

where  $e_1 = a$ ,  $e_2 = b$ ,  $e_3 = e$ ,  $e_4 = f$ ,  $e_5 = c$ ,  $e_6 = d$  and  $B_0 = \{e_1, e_2, e_3\}$ .

Step 2. According to (2) we have  $B(M, B_0, 1) = \{\{e_4, e_2, e_3\}, \{e_6, e_3, e_3\}, \{e_6, e_3\}, \{e_6, e_3\}, \{e_6, e_3\}, \{e_6$  $\{e_1, e_4, e_3\}, \{e_1, e_5, e_3\}, \{e_1, e_6, e_3\}, \{e_1, e_2, e_4\}\}.$ 

Step 3. For finding  $B(M, B_0, 2)$  we repeat the steps 1 and 2 as

follows:

$$\widetilde{W}(e_1,e_2) = egin{array}{cccc} e_4 & e_5 & e_6 \ 1 & 0 & 1 \ 1 & -1 & 1 \ \end{bmatrix}$$
 ,  $W(e_1,e_2) = egin{array}{cccc} e_4 & e_5 & e_6 \ e_5 & 0 & 1 & 0 \ \end{bmatrix}$  ,

 $B_0^1 = \{e_4, e_5\} \text{ and } B[M(e_1, e_2), B_0^1, 1] = \{\{e_6, e_5\}\};$ 

$$\widetilde{W}(e_1,e_3) = egin{array}{ccc} e_4 & e_5 & e_6 & & & e_6 & e_4 & e_5 \ e_3 & 1 & 0 & 0 \end{bmatrix}, \ W(e_1,e_3) = egin{array}{ccc} e_6 & e_4 & e_5 \ e_3 & 1 & 0 & 0 \end{bmatrix},$$

 $B_0^2 = \{e_6, e_4\} \text{ and } B[M(e_1, e_3), B_0^2, 1] = \emptyset;$ 

$$\widetilde{W}(e_2,e_3) = egin{array}{cccc} e_4 & e_5 & e_6 & & & e_6 & e_4 & e_5 \ 1 & -1 & 1 \ 1 & 0 & 0 \end{bmatrix}, \ W(e_2,e_3) = egin{array}{cccc} e_6 & e_4 & e_5 \ e_4 & \begin{bmatrix} 1 & 0 & -1 \ 0 & 1 & 0 \end{bmatrix}, \ B_0^3 = \{e_6,e_4\} \ ext{and} \ B[M(e_2,e_3),B_0^3,1] = \{\{e_5,e_4\}\}. \end{array}$$

Thus we have  $B(M, B_0, 2) = \{\{e_4, e_5, e_3\}, \{e_6, e_5, e_3\}, \{e_6, e_4, e_2\}, \{e_6, e_4, e_1\}, \{e_5, e_4, e_1\}\}$ . For finding  $B(M, B_0, 3)$  we must consider:

Now the process is finished and all bases of M are generated without duplications (the matroid of our example contains 13 bases).

### REFERENCES

[1]. Tutte, W. T., Introduction to the Theory of Matroids, Elsevier, New York, 1971. [2]. Tutte, W. T., A Class of Abelian Groups, Gan. J. Math., 8 (1956), 13-28.

Received 1.XI.1987

Faculty of Mathematics, University of Bucharest. Academici 14, 70109-Bucharest, Romania.

4