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It is well known that the subdifferential of any proper function f

from a Banach space Y to R is a cyclically monotone mapping and if f -
is lower-semicontinuous, proper and convex, then it is subdifferentiable
at each interior point of its etfective domain. \’[Omovel on these assump-
tions, the subditferential of f is & maximal cyclically monotone mapping
(see [1,p. 89-—987).

This paper, deals with similar results on explicitly quasiconvex
functions and improves some resulis ot our recent paper [12].

1. Introduction. Let .Y be a real Banach space and let f be a function
from X to R. Denote by D(f) its effective domain {we X : fla) < + oo}

The function fis called quasiconvex if

(1.1) fle -ty — ) < max (f(z), f(y))

forall @,y € X and t e [0, 17]; f is said to be stricily quasiconvex if its effec-
tive domain is eonvex and

(1.2) Sl - Wy — ) < max (f(2), f(y))
whenever @, y € IXf), f(2) # fly) and te]0,1];f is said to be explicitly
quasiconvex if it is hoth quasiconvex and strictly quasiconvex.

The function f is said to be lower (upper) — semicontinuous ai r,
if for each A << f(o){h > f(w,)) there exists a neighbourhood of z, such
that » < flx) (2 > fle)) whenever @ belongs to this neighbourhood;
1 is continuous at x, it itis both lower — semicontinuous and upper — semi-
continuous at x,. We say that f is lower — semicontinuous if it is lower -
semicontinuous at each x e X.

The funection fis said to be hemi-lower (wpper) — semicontinuous

at « if for each he X the funection ¢t — f(x + th) from [0, - oo to R is
lower (upper) — semicontinuous at origin; f is called hemi-continuous at @
it it is both hemi-lower-semicontinuous and hemi-upper- sem]cont]nuou%
at .



54 R. PRECUP 2

We shall denote by I, and Lola € [R) the level sets of J> namely .
(1.3) L, ={wveX:flx) <a},
(1.4) L, ={zeX:f2) < a).

Clearly, fis quasiconvex if and only if each of its level sets is convex.
In particular, if fis quasiconvex then the sots L_o={zeX:f(x) =— oo}

and L., = D(f) are convex. : ,

Any function f is lower-semicontinuous at each satistying f(z) =
= — 00, is upper-semicontinuous at each x with J(®) = + co and is conti-
nuous at each # belonging to the interiors of the sets {(reX:fle) = — oo}
and {we X : f(x) = 4 oco). Also, S 1is lower-gsemicontinuous if” and only if
each of its level sets I, is elosed.

Along this paper we shall use the following results :

-~ a) If the function f: X — R is strictly quasiconvex and L. # O, then
Lo = ol La. If mn addition f is lower-semicontinuous, then even the equality
Ly == cl Ly holds (see [4, Lemma H).

b) Any lower-semicontinuous strictly quasiconvex fumection is quasi-

tconvew and consequently, caplicitly quasiconvex (see [6]and [2]).

¢) If a lower-semicontinuous quasiconver Junction s hemi-upper-
semicontinuous at a poind @, then it is continuous af a (see [8]). '

The function f is said to be proper it J(x) > —oo for every aec X
and D(f) is non-empty.

Denote by X* the dual space of X and write (w*, o) instead of z*(z)
for z € X and «* € X*, We shall identify a multivalued mapping 4 : X —
— 2% with its graph 4 « X % X* and we shall sot D(A) ={weX: Adx #
# 0},

The multivalued mapping af: X — 2% where
(L5)  flw) = {a* c X* : fly) > J@) + (2% y — @) for all ye A3

is called the subdifferential of f. Clearly, if fis not the constant oo,
then D(af) is a subset of D f). The function f is said to be subdifferentiable
at x if @ e D(df).

We recall that it f is a lower-semicontinuous proper convex function,
then int D(f) < D(af) (see [1, Corollary 2.2.1]) and D(0f) is a dense subse
of D(f) (see [1, Corollary 2.2.2]). '

We easily see that the subdifferential of any proper function f is
cyclically” monotone, that is

(1.6) (@, @ — @) 4 ... (@5 1y @u — @0_y) - (@f, g — @) < O

for every finite set of pairs [, 2¥] e A.
We reeall that if fis a lower-semicontinuous proper convex function,

then its subdifferential 9f is maximal cyclically monotone (see [1, Theo-
rem 2.2.21).

2. Generalized subdifferential. Tet S Dbe any function from a real
Banach space X to R.We define the generalized subdifferential of f as a
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multivalued mapping F(f) from X into X%, yhem for each « e‘}'Y, (f)(x)
is the set of all z* € X* satistying the following two conditions :

(2.1) (%, y — @) > 0 implies f(y) > f(a),
(2.2) (x*,y — @) >0 implies f(y) > f(x).

i ion i elate uasi-subdifferential ¢*f defined
"his notion is closely related to the quasi subdif ed
in [3’11(352 :Lll:o [14]) by using only condition (2.1) and also to the tangeniial
1(f) defined in [37. _ ' 7
gt délelzgrlv if [j' _IlS not the constant function + oo (i.e., f # —{— roo), ngg
DI < 'p‘(}f) and for every » e D(F(f)) the set £(f)(z) u {0} 1_&_&199111;_011
cone in X*(i.e., it is closed with respect to addition and multiplicati
v non-negative scalars). 1) ‘ ( . B
) noﬁlsojo e I'(f)(») if and only if f(y) > ];(,%) f;): all y e X and F'(f)(@)
— X* if and only if f(y) > flw) for sl y e X,y # 2. ) .
=t ’l}lfieal%gllzifi‘ng {£§1/;)ution is known between subdlgf_eﬁten‘glz}l) (g;})d L;)ﬁ%—
vexity : r function f is convex on each convex subset of 1 - Also,
; e)\x'lgu'lc%ﬁ)“h fis quasifconvex ou each convex subset of !)(_a"if).? b}ni%la_z
?zllmtlon can be established between generalized subdifferential and explici
gnasiconvexity: '
PROPOSITION 2.1..A function fis explicitly quasiconvex on each convex
subset of DU'(f))- | A
* Proof. Liet ¢ be a convex subset of D(F(f)) and qlet a?,dy € /)an_
i e[’O,i_'ll Set y, = @ + H(y — @). Since :}:)—>;316 :or_(t?fg'{ ; a,)”a;n> g ivjﬁe—r:a
— (A — )y — x), we have (¥, v — Y1) > ity — ) >0, ;
ra_“-“(_:ijj'(f;()}j?). If z;nc of these inequalities is Stl‘l(;t, thep df%rl;“;é“(yﬁ ;L V<e
2 11-1&}:'(1“{.:):), f(y)). Otherwise, ie. (y¥, @ —u) = {_yt .,('.I/I\—‘ ,y;\) ‘—ndv ity
fn) < J@) and fin) < fly), whence fiy) < max (fa), fy) and il Jlo) %
e }(,,B,' then f(y,) < max (f(z), fly)). Hence f is explicitly quas i X
o O.Let us remark that if f is any proper function then 2f S 7 f)t.hg;
articular, if f is a lower-semicontinuous proper con.veix t}lrlxtcblon, ,
};:L DE f) X FD(f)). More generally, we have the following result.

Tien ) Neg y N X
ProrosITioN 2.2. Let f be an explicitly quasiconvex function from )
A A Lo N . . E . : a‘,
to R and let w e D(f). If fis upper-semicontinuous at y whenever f(y) < flx),
to nd let N.if. ; ;
then x e DI(f)).
i int of (] and so
Proof. If 2 is a minimum point of f, then 0eF(f)(») ¢
dilad i ieve its mini @. Then
A {L\f{}t) let us suppose that [ does not“(},chlp\xg 1t‘§71}[}1}111'11311;?1L ﬁ‘g éonvex,
the level set Ly, is non-empty and since f iy (.]‘U&bltg) 0y ‘\I,I i )w(e e
Mo'rem’l‘l' since f is upper-semicontinuous qt each y el ,(.:,,1, 70*: S
. i op Then, since ¢ Ly, there exists a non-trivial !
s e T o T (see 1, Theorem 1.1.9]). Hence (2%,
that (o%,y — @) <0 for all y & Lyn(see [1, Theorern 119D,
v,r.— @) > 0 implies f(y) > f(@). Thus, 2* Satmlcb conditior 1. e b
) Clearly, (z*,4 — «) < 0_for all y € el L. Iri Ill)mtl(iut a‘flo’ﬂowlq e
e i 7, YO8 L) . [l | A ¢
quality holds for every w € L. because Ly T o

(2%, y — x) > 0 implies f(y) > flo). Thus, a¥ also satisfies condition (2.2
o, : !
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Therefore, z* e, 0 .
proof. » #* e F(f)(x) and hence z e D(F(f)), which completes the

COROLLARY ) }
Y 2.3. Let f be a lower-semicontinuous strictly quasiconvex

Junction from X to R. I ] i
. ] ‘ . 18 hemi-upper-semiconti . .
point of D(f), then ff hemi-upper-semicontinuous at each interior

(2.3) int D(f) = DE(L)). |

Proof. In our assumpti b i i

: ssumptions the funetion f is explicitl i TexX

g};;iitfont;n})lo;ls @t each interior point of I)( f).fNext gve llngxrngillizOIi;i%X
sition 2.2 to the function f: X — R with D(f) = i £y Fla) )

for all x e int D(f). Finally, we use theufzact tha,t(f) ol IS

F(f)(x) = F(f)(»)

for cach o €int D Tnded, el eint D). 18 2% < Re) and (0%
7> \;e o ):“ : 1‘;1 J) = fla), (fly) > flz)) and since f(x) = f(x) ‘é;.ﬂ(i
inics T(fila) & BP0, o Tot o] ot st o €1 /)(z)

— i ' ). Now let a* e P(f)(x) and suppose that £
g0 > 000\ T yeint D), then obviowsy Ji) > 119 () (o)
o 1 A a1 (I:'uu;ia.l'y point of D(f). Then y, = & + i(y — ) € inf fJ(fi
i) o o Wi or all € JOL[. Tt follows that f() = fie)
f.(.?/)sk f{‘m)(a 'f(;;)>}t(?::‘)1)0’1;éﬁ(é{; f*m };tngﬂv (uasiconvex, we (1(‘.(111(3{‘,/1;,]1;{:1‘,
Phs proct i thas tomplete a* € F(f)(«) and therefore F(f)(z) = F(f)(a).

PRroyosIrion” e : .
1z, grad f(x) # 0 and f is upper-semicontinuon
at each y satisfying f(y) < f(x), then € D(F(f)) and g-f?x %G?f'(i?)”g %)(?GIéZ?;oz:,s

{:‘;}qf. We r;h@ll prove that grad f(«) e F(f)(2).
’1‘hen,‘s‘i-;12:1§vr :;gz}(tf-r){gagl f(a:), y —a) > 0 but nevertheless f(y) < f(z)
g B 8 ey t 0 (1.1..1‘d J is upper-semicontinuous at y, we can find
o '50’:33' (g;dfl.!(iﬂ}s g — @) >0 and f(y,) < f(z). By (grad
certain nu inher < I)geﬁI{igl?l_r;tiii{tlré_(l{g’)tl>i{(x) i e:}'O, il “0. Tlei;{-’.‘ s
E T zon t 5 the quasiconvexity of f. Thi
hhowsNigum, gmd f(w) satisfies condition (2. l_}.le Cieppealomn gt (i
e f‘:\; ztlilp}lgs_e{.} t.ha_m. (grad f(x), y — @) > 0. Then fl(x 4 Wy — @) >
ol < );'( 10, % (ly < 1). On the other hand, as we have alreads
P h;‘i,vl{ ﬂ:) }m) _2511‘1(1 In consequence, by the quasiconvexity of f. Wﬁ
o .‘.f > Sz 41Uy — @) for all te[0,1]. It follows that f' ) >
\fl.‘hvl}}s,'gmdj(:;r) also satisfies condition (2.2). ARG =
erefore, grad f(z) e F(f)(x), as claimed.
COROLLARY 2.5. Let f: X — [

g LLARY 2.5. 2et f: X — [R be a quasiconvex function. I ]
upper-semicontinuons and Gate tifferentia ok fu_?wll'f)'i.?/- 0y and
grad f(z) # 0 for ol 2 € D(f), ﬂ;‘zz‘” differentiable at each point of D(f) and

(2.4) grad f < F(f).

I V nn y i
P, gllqlg“%]%at é(;ll.o\vs we shall determine the generalized subdifferential
¥ quasiconvex function at any point of its effective domain
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Let us set
K(z) ={heX: there is ¢ >0 such that flo - th) < f(#)}

K(x) = {he X :there is ¢ >0 such that f(w + th) < f(2)}

and denote
K'(w) = {o* e X¥: (a%, ) < 0 for all ke K(x)}

RK(w) = {@* e X*: (2%, h) < 0 for all he K ()}

ProposiTION 2.6. Let f: X — R be any function.
(1) If f achieves ils minimum ot &, then

F(fx) = K@),

(2.5)

{ii) If f s strictly quasiconvex and @ € D(f) 18 mot a minrmum Doint
of f, then
(2.6) F(f)(x) = K'(2).

Proof. (i) Let o* e F(f)(@) and let 7 be any element of K (). Then
we have (o*, h) < 0. Indeed, otherwise (i.e., (z%*, h) >0) the inequality
(%, (x + th) — @) > 0 implies that f(v 4 th) > f(=) for all ¢ >0, which
is absurd because h e K(x). Therefore (2%, k) < 0 for all he K(z), hence
F(f)(z) = K@) :

' Now let 2% e K°(2). Since » is a minimum point of f, obviously &*
satisfies condition (2.1). To verify (2.2) let us assume that (z*,y — ) >0
and that, nevertheless, fly) = fla). Then y — v € K () and in conseguence

a* y — @) < 0, which is absurd. Thus, 2* satisfies (2.2). Therefore ¥ e

e F(f)(z) and so K°(2) = B(f)@).

(i) Let a* e F(f)(») and let h be any element of K(z). We want to
ghow that (a*, k) < 0. Indeed, in the opposed case, from (z*, (¥ + th) —
— 2) > 0 we derive f(z + th) > f(x) for all ¢ >0, which is absurd be-
cause h & K(a). Hence F(f)(®) = K'(2).

To prove the converse inclusion letus consider an arbitrary o* € K'(x).
Tirst let y be such that (2% y — #) > 0. Then y — o ¢ K(«). Hence

f() = f(z). Thus, ¥ satisfies (2.1). _ :
" "Next, let y be such that (%, y — x) = 0. Then there exists a neigh-
bourhood V of y such that (&*,y; — ) > 0 for all 4, € V whence, by what
has just proved, f(y,) = f(z) for all y, € V. It follows that y ¢ el Ly(z. On
the other hand, since f is strietly quasiconvex and Ly, 18 non-empty, we
have Ly < ¢l Lyx. Thus, ¥ € L and hence f(y)> f(z). This shows
that «* satisfies (2.2).
It follows that #* € F(f)(2) and hence K'(x) cF(f)(x). This completes
the proof. ' ;

 Remark 2.7. Let f: X >R be a striofly quasiconver function. If f
does mot achieve its minimum at & and f is upper-semicontinuous ot each
point of Ly, then ‘
(2.7) K'(z) = K°(@) \ {0}



58
R. PRECUP
6

Indeed, let «* € K'(z) and he K
L et ) € K (x). We want t i #
IELOI.I Sl?’lce this 1nequahty_:trivially holds if & alrslo Pt)Oels()]::[(::Z 1;1(1)&}(((2;, L i
Job us spposo that ke K(a) \ K(a), ie. fio 4 ) = fla) for u_certan
of & ‘501.11'&i’n‘%‘at', T € Ly < el Ly, it follows that each neighbourh'c }
g e 0-. Ir e?d,.st‘ one point h, such that f(z 4 th ) < f(@) 1 e
2 1, - An consequence (4%, h) < 0, as (lcg]'r(\dl | Jl IR IER00
e BO(a) . {0). sired.  Thus, H'(2) <
cuﬁfaoflgtjm:g’h hLE ot € Kx), % # 0 and let he K(w). Then, there
show that the last :ﬁzq{ii{j} ti&31§{§$)hallld alio_(a%1) < 0. Wo shall
.* .‘_‘-'- : I'll. J'lcry ﬂds_ Id, herwive T I
;}{' # j_ f:k&)nd I 1.5‘ upper-semicontinuous at z - th, :;}Jei%déxigﬁsh? ‘;:iqéi’ s:;n'c 0-
which 1: a,< (*fn(rft);ra;a(ﬂgﬁéﬁ*’%l) >f“' Etmice Iy € K(w) while '(;"* ??1; >rh:;lj
B . *0 ion. erefore (z h) <0 and so z* e ] "o i
shows that K°(x)\ {0} c K'(»), thereb;; completing 1?11'3m pfaf)(f (‘z')f. (%‘}'171)8

CoroLrARry 2.8. Let f: X — R . .
111 i Glioaus ‘iiﬂ?"i’i??g@ )aim}("a%;% o) B0 T g enten.
(2.8) F(f)(x) = {t grad f(z) : t > 0}.
convelggqggélfs}irof Il'gtlz) (;fsitli“zlrlrxaiig,t}ggtgrad H&hitn Oh = FUHp- By she
{heX: (grad f(»), h) < 0} « K(w),

whence K'(m) < {t orad . 2 .
Proposition 2.6 (ig),g fl#):¢ >0}. Next, equality (2.8) follows by

COROLLARY 2.9. L ™
9. Let f: X : .
vew function. ‘ 1 — R be a lower-semicontinuous proper con-

(1) If © € D(Of) and f does not achieve its minimum at @, then

(2.9) A F(f)(@) = el (U{M(®): 1 >0))
(ii) If in addition x € int D(f), then
(2.10) - F(f)®) = u{rof(@) : x> 0}.

Proof. (i) By Proposition 2.6 (ii), F '

) By Proposition 2. (@) & K'(a); dlearly, K’
= g“(m) a,g.d since K (@) < el K(x), we ,hax?]:a)"(}(}o(x) IS (f—()",(x(;kﬁg{: %"(w)' i
= ((liji.g ?\Sfuﬁga:a}(ﬁ 0.}) (see [13, Theorem 23.7]). . '

] @) 18 weakly* closed and bounded i
g)(gi), Eﬂ?{ il(;mjf('e)tha,t df(w) is weakly* compact. Coﬁse%ueﬁ%cra‘%iee cﬁlfvlg;
@): A2 0} gene ' i ,

il } generated by 9f(), is closed. Thus, K%(«) \_{0} =

3. Pseudomonotonieit ' i : .
multivalued mapping flfo;m y Xoi’ igs(l)xc;yalfzed subdifferential. Let A4 be a

We say that A4 is pseud i
wing condition is fulfﬂlgd u omonotone if tor every w,y € D(A), the follo-

3.1 ;
(3.1) (g{*,y — ) 2 0 for all y* e Ay, whenever there exists
#* € Aw such that (z*,y — ) > 0.
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Clearly, any monotone mapping is pseudomonotone.
I the mapping A is univoque, then condition (3.1) reduces to

(3.2) (Aw,y — ») > 0 implies (Ay,y — z) = 0,

which is just the condition of the pseudomonotonicity defined in [T].
We say that 4 i8 cyclically psewdomonotone if

min (@, ¥ — Zy)y - - ',I(x:rf17 Za — Ta_1)s (@), g — @) <0

(3.3)

or (o, % — %) = .. = (@F_yy By — Buq) = (B B — @) = 0,

for every finite set of pairs [a;, #*] € 4.
Obviously, any cyclically monotone mappi

monotone.
A (cyclically) pseudomonotone mapping 4 c X x A* is said to be

mazximal (cyclically) psewdomonotone with respect to € (where C < X)),
provided that if B = X x X* is a (eyclically) pseudomonotone mapping
such that Az < Ba for all xe X and A% = B for all z € X\ €, then
A = B.

ProrosiTioN 3.1. The following stalements are equivalent

1°. The mapping A is pseudomonotone;

2° For every x,y € D(A4), we have
(3.4) (y*,y — ») >0 for all y* € Ay, whenever there exisls ©* € Ax such

that (x*,y — x) >0;

3°. We have

ng is cyclically pseudo-

min (%, y — @), (4% & —9)) <0
(3.5) or (a%,y — @) = (y*, @ —y) =0,

for all @,y € D(A), o* e Aw and y* € Ay. :

The proof of Proposition 3.1 can be found in [12].

By Proposition 3.1.3° we immediately see that any cyclically pseu-
domonotone mapping is pseudomonotone.

ProposITION 3.2. The generalized subdifferential F(f) of any function

f is cydlically pseudomonolone.
The proof is immediate and can be found in[12].

ProposITIoN 3.3. Let € be a mon-empty open convew subset of X
and let f - ¢ — R be Gdteaus differentiable on C. In order that grad f = F(f),

it is necessary and sufficient that grad f be pseudomonotone.

Proof. The necessity of this eondition is immediate because, by Pro-
position 3.2, F(f) is pseudomonotone.

To prove the sufficiency, let us assume that grad f is pseudomono-
tone. Let @ and ¥ be two arbitrary points of € such that (grad f(z),y — @) >
> 0. Then, (grad f(«),(z + Hy — x)) — @) > 0 for every t € [0,1]. Since
orad f is pseudomonotone, we may infer that (grad flz + tly — @),
y — @) > 0 for all te [0,1]. It follows that the function ¢:[0, 1]— R,

gty = flz + iy — @) (t €[0,1]), is non-decreasing on [0,1]. Therefore
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g(1) = fly) > f(x) = ¢(0). Similarly we can prove that (grad -
. 3 ; grad - f(x),y — &)>
> 0 implies f(y) > f(«). Thus, grad f(x) € F(f)(x) and the prooff i)s’ élomple)te.

Remark 3.4. Let C be a non-empty open convex subse G
f:C — R be Giteaux differentiable 0111) C. £0001'din,9; to I’rogpgs(i)éoi 2a Iid
a necessary condition that grad f < F(f) is that f be explicitly qua‘:siz
convex. A sufficient condition that graf f < F(f) is that f be quasiconvex
u‘pper—scrmcontinuous and grad f(#) # 0 for all # € C (see Proposition 2 3A)’
The necessary and sufficient condition that grad f < F(f) is that f'be.
pseudoconvex (see [7, Theorem 3.1]).

Next we shall prove a theorem on the maximal ps motonici
of the generalized sfbdifferential.‘- R s i

ProposiTiON 3.5. Let f be a function from X to R o
_ N ¢ ! i , nd 1 .
-empty subset of D(I(f)) such that 4 oo diCaknen

(38) if wel and x4 heL,,, then © 4 th € D(F 5 .
depending onw x and h). A + the DIE(f)) for 0 <& <ty (4

1f f is lower-semicontinuous at each x < C, then F(f) is maximal pseu-
domonotone with respect to C.

o T e o e sk th g 7
s min. ((z%, 5 — @), (y*, 2 — ) <0
(3.7)
or (a%,y — @) = (y*, & — y) = 0
for all [y, y*] e F(f).
We shall prove that (3.7) assures that

(3.8) (x*, h) >0 implies flz + h) > f(»)
and
(3.9) (2%, h) > 0 implies flx + h) > f(z).

To this end, let us first consider an arbitrary )
y h such that (a*, b :
Suppose that, nevertheless, f(@ 4 ) < f(z). Hence @ + he Eﬂ(ﬂ. ’B)Z (?g)
there exists ¢, >0 such that « + th e D(F(f)) for 0 < ¢ < t,. Clearly, we
may assume that 4, < 1. Applying (3.7) to y =y, =a 4+ th (0 <{ ?<t )
Ia_.nd t.alf}ilg into account that (2*,y, — @) = (%, b) >0, we get (yF, i) n>
>0. Since y* eI (f)w.), by (¥, (¥, + sh) — ) >0, we must ,have
f[a: + (¢ + s)h) >floe -+ th) for all 0 <t <t, and 5 >0. In particular
for s =1 —¢ we have f(x 4 h) >f(o +th) (0 <t <t) and for s :2
we have f(x -+ 2th) > f(x 4+ th) (0 <t < ¢,). Whence '

(@) > flo +h) >f@ 4 h)> ... >f(w+2i"h )>

,Which is impossible d ' . i
o _hold.IT ible due to the lower sem@ontmmt}? of f at a. .Hence (3.8)

Y MAXIMAL PSEUDOMONOTONICITY 6t

Similarly, if (#* h) =0 and we suppose that f(z + k) < f(®),

we get
oy t
flx) >fle + h) > fle +-th) > ... >f(.')c +2n~h)2 it i

which once again contradicts the lower-seniicontinuity of f at . Hence
(3.9) must hold too.

Therefore x* € ¥(f)(x), thereby proving the maximal pseudomono-
tonicity of F(f) with respect to ¢

Remark 3.6. Under the assumptions of Proposition 3.5, F(f) is
maximal cyclically pseudomonotone with respect to C.

Indeed, it it easy to see that the maximal psendomonotonicity
with respect to ¢ of a cyclically pscudomonotone mapping implies its
maximal cyelically pseudomonotonicity with respect to C.

COROLLARY 3.7. Let f: X — R be a lower-semicontinuous Quasiconves

function. If D(F(f)) = D(f), then the generalized subdifferential F(f) is
maxzimal cyclically pseudomonotone with respect to D(f).

Proof. Apply Proposition 3.5, where O = D(f).

CoroLLARY 3.8. Let f:.X — R be a« lower-semicontinuous strictly
quasiconvex function having int D(f) # @. If fis hemi-upper-semiconti-

nuous al each interior point of D(f), then the generalized subdifferential I(f)
s magimal eyelically pseudomonotone with respect io inl D(f).

Proof. Use Corollary 2.3 and apply Proposition 3.5 with € = int

- D(f).
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