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1. Let X be a linear Space over IR and let X# bhe the algebraic
dual of X. Let § be a nonempty set and A4 ={a,:5€8} ¢ X#. Let
b e X#. Consider the following systems of linecar inequalities ;

Sl{a(w) 20 forall ged

bz) < 0

Sg{a(m) >0 for all ge A
blz) < 0

We shall study the relationship between the inconsistency of S, and
‘that of S, and we shall give some applications.

2. Throughout the paper we shall suppose thaf :
(1) There exists @, € X such that b(zy) = 1
and a(x,) =1 for all a e A,

THEOREM 1. Let us consider the Jollowing statements
(1)  I'or each xe X, b2) < sup {a(x) : @ €d}
(2) 8, is inconsistent.
3) S, 1s inconsistent.
(4)  TFor each we X there is g e A such dhat b(z) < alw)
(8)  For each weX there is ptt e conv(4) such that b(w) — aH(x).
Then (1) and (2) are equivalent, (3), (4) and (5) are equivalent and (4)
implies (1).

Proof. (1) = (2). Let € X be g solution of §,.
Then b(z) < 0 and b(— z)<sup {af— ) 1a e A} =—int{a(a):a €d} g
< 0, hence b(z) = 0, a contradiction.
(2) = (1). Letwe X and M — Sup {a(z) :a e A} < co. Lot Y= Mz, — 2.
‘"Then a(y) > 0 for all ¢ €A ; since S is inconsistent, we obtain bly) = 0,
hence b(x) < M.
(3) = (4). Let we X, 5 — d(x)xy — . Then b(y) = 0; since S, is incon-
sistent, There exists ¢ € A such that a(y) < 0. 1t follows thatb b(2) < ofx).
{4) = (5). Let ze X. Using (4) we deduce that there are a', a’" e A
such that a'(w) < b(=) < a"(z). If o'(z) = a''(@), put o¥ = a'; if a'(w) <
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< a''(2), put a¥# — [(a"(2) — b(@))a' - (b(w) — a'(@))a" (" (z) — a'(z)).
Then a# € conv(4) and aW (@) = b(x).
(5) = (3). Let 2€ X be a solution of §,. Then b(x) < 0. Let 4# € cony (4),
b(x) = o#(x). Tt follows that b(z) >0, a contradiction.

Since obviously (4) implies (1), the proof is complete.

BEXAMPLE 1. Let X — C3[—1,1], 4 — ([t oy s -]
—1 < <t, <ty 1Y, b(x) = (1/2) 2"(0) for all zxe X.
Then (I) is satisfied (wo(2) = 19). 8, is inconsistent, but 2(l) =1* is a
solution of §,.

Henee (2) does not tmply (3).

3. For v € X let ug denote by o, the function

; Vi8R, g,(s) = as(x).

THEOREM 2. Let § be a vonnected topological space and SUppose
that for each z e X the Junction v, is continuwous on g. Then (3) is equi-
valent to
(6) Hor each xe X there exists a e A such that b(z) = a(x).

Proof. Since (6) = (8) = (3), it remains o prove that (3)implies (6)

Let @ e X. Since (3) implies (5), there exists att e conv(4) such that
) = a¥(2). Hence b(x) € conv {ay(z): s e St. The function s - as (@)
is continuous on the connected space S; it follows that tas() : se 8}
is an interval. Therefore b(w) e {as(z): s e St and the proof is finished.

EXAMPLE 2. Let 0 < & S and let X = OFq, 81 be endowed
with the norm

Wl = max {1y, 1y, ..., 1713,

-1l being the sup-norm. Let X be the topological dual of X,

Let 8 = {(, ..., bya) ER™2: o <t < ... < lorg < P}. For s -=
= (1, .. o lnig) €8, let a; = (b, .. o targs +]

Let @4(t) = 1"+1 and let b € X’ be such that b(zy) = 1. Then (I) is
satisfied.

Using Theorem 1 we deduce that if 8, is inconsistent, then Sy iy
inconsistent. The converse is also true; sec [2], Theorem 1.

COROLLARY 1 (T. Popovicin). If 8, s tnconsistent, then Sor each
J € o, B] there ewists s e § such that b(f) = a(f).

Proof. Let 8, be inconsistent. By the above remark, S, is alse
inconsistent. 8 i a connected subspace of R*+2 and the function s — a,(f)

is continuous for each Je Pla, 1. Now it suffices to apply Theorem 2.

EXAMPLE 3. Tet X be g metrizable compact convex subset of
a locally convex Hausdorff space over R. Let X = O(K) be endowed
Wwith the sup-norm and let

S = {(h, by ¢): 1, ¢, ek, 4 # 1, ce(0,1),
Let 2, e O(K) be g strictly convex function.
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Tor s = (i, t,,0)e S and xe C(I) let
as(@) = [(1 — ¢) w(l) = ex(ly) — 2((1 —e)t, - oly)]f
L — ¢) my(ty) - 62y(ty) — (1 —e)ty + oty)).

Let be X’ be such that b(zy) =11,

By Theorem 1, if &y s inconsistent, then S, is inconsistent. The
converse is also true; see [3], Corollary 1.

COROLLARY 2. ([4], Th.2). If 8, is tneonsistent, then Joy each
% € C(F) there exisis s ¢ & such thai (@) = as(x).

Proof. Let S be inconsistent. By the above remark, Sy is also
inconsistent.

Let A= {(t,7):teX}. The product K x K i3 connected and
(I X KON A = 0,0, where 0, and €, are connected components ;
we have (t,1,)e ¢, ift (g, 1) € O Moreover,

8= [(I0 X T)INATX(0,1) = [0, X (0, 1)]u [C, x (9, 1]

Let 8" = ¢} x'(0, 1.
Tt is easy to see that

€ty 1y ) = i, t, t—0)
Sinee S, is inconsistent it follows that the tollowing systern :

{(ls'(ﬂf) >0 for all ¢'eg&’

blw) <0
is also inconsistent. Bub & is connected ; an application of Theorem 2
Tinishes the proof.

REMARK. Applications of Corollaries 1 and 2 are given in [2],

[4].

4. Tiet B(S) be the space of all real-valued, Dounded functiong
on S.

THEORUEM 3. Suppose that for each z e X, v, e B(S). Then (2) 13
equivalent 1o :

(7) There ewists a positive linear Junctional p on B(S) such that
b(@) = pw,) for all ze X.

Proof. (2) = (7). Since (2) implies (1), we can use Erweiterter Maxi-

-~ mumssabz of H. Konig {1]; it follows that there oxists Pp € B(Sy such that

(i) p(v) < sup{v(s) : s €8} for all v e B(S), and

(il) W) < plwg) for all z e X.

Let v e B(8), » < 0. Using (i) we obtain p(®) < 0; therefore pis a
positive linear functional. ' !
' Let o e X. From (ii) it follows that W(—a)<plo_,) = pl—w,), i.e.,
(@) = p(v,). |
{7) = (2). Let 2 € X be a solation of &y Then a,(2) > 0 for all s e S,.he_nce
¥ 2 0. It follows that b(w) == P{v,) = 0. Bt b(x) < 0, a contradiction,
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THEOREM 4. If S 1s a compact Hausdorff space and v, € CG(S) for
all z € X, then (2), (3) and

(8) there ewists a probability Radon measure p on S such that b(x) —
=\ v,(s)dp(s) for all x € X are equivalent.
S
Proof. (3) = (2). See Theorem 1.

(2) = (8). The positive linear functional p on B(S) given by Theorem 3
satisfies p(1) = p(vy,) = b(a,) = 1. Hence the restriction of p to O(S) can
be identified with a probability Radon measure on 8.

(8) = (3). Let € X be a solution of S,. Then d(x) < 0 and a,(z) >0,
hence v,(s) > 0 for all s € §. It follows that m : = min {v,(s) : s € §} >0.

Then b(x) :va(s)dp(s) = m > 0, which contradicts b(z) < 0.
S
EXAMPLE 4. (sce also [1]). Let a, € X3 be such that
(i) For all = e X there exists do(w) = lim a,(2) € R, and
(i) There exists 2, € X with @(»)) = 1, n =1, D e
Then d., € X# TLet § = [N U{co} be the Alexandrov one-point com-

pactification of the discrete space, [N. 1t is easy to verify that v, € C(S)
for all zeX.
Let b € X# be such that b(x,) = 1. From Theorem 1 and Theorem
4 it follows that (1)--(5) and (8) are equivalent. This means that the fol-
lowing statements are equivalent :
(1) b(x) < sup{a,(®):ne N} for all z€ X
2") b(@) = 0 for all w € X with a,(z) > 0, n = 1,2, ...
(3") b(x) > 0 for all ¢ € X with au(x) >0, n =1,2, ... and im a,(z) >0
(4') for each @ e X there exists s€ N U{co} such that b(z) < ax).
(5') for each x € X there exists a* €conv{a,:se€NU{co}} such that
() = a¥(x).

(8') there are ce, 61, €z ... 2 0y 6o+ o+ ... = 1, such that
b(@) = oo im @, (@) + ¢ (®) -F epan(x) 4 ... for all ze X.
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