MATHEMATICA-REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 17, N° 2, 1988, pp. 181-184 (5) = (3), Let a v. I be a solution of S. Then bid? v. d. Let att a conv (4),

companies in takes times there IS is Carrollaryes ON SOME SYSTEMS OF LINEAR INEQUALITIES Trans, Let S, he humand I RASA, the above transact to notte in

(Cluj-Napoca)

2 1- 1 - 1, repulsion to the first planet as not I we make it 1. Let X be a linear space over IR and let X^{\sharp} be the algebraic dual of X. Let S be a nonempty set and $A = \{a_s : s \in S\} \subset X^{\sharp}$. Let $b \in X^{\#}$. Consider the following systems of linear inequalities: they be a mathematically I do him to have

The sector is the same that the second second is the second secon We shall study the relationship between the inconsistency of S_1 and that of S_2 and we shall give some applications.

2. Throughout the paper we shall suppose that: There exists $x_0 \in X$ such that $b(x_0) = 1$ $\epsilon(\mathbf{I})$ and $a(x_0) = 1$ for all $a \in A$.

THEOREM 1. Let us consider the following statements:

For each $x \in X$, $b(x) \leq \sup \{a(x) : a \in A\}$ (1)

(2) S_1 is inconsistent. (3) S_2 is inconsistent. (4) For each $x \in X$ there is $a \in A$ such that $b(x) \leqslant a(x)$

For each $x \in X$ there is $x^{\sharp} \in \text{conv}(A)$ such that $b(x) = x^{\sharp}(x)$. (5)Then (1) and (2) are equivalent, (3), (4) and (5) are equivalent and (4) implies (1).

Proof. (1) \Rightarrow (2). Let $x \in X$ be a solution of S_1 . Then b(x) < 0 and $b(-x) \le \sup \{a(-x) : a \in A\} = -\inf \{a(x) : a \in A\} \le -\inf \{a(x) : a \in A$ ≤ 0 , hence $b(x) \geq 0$, a contradiction.

- (2) \Rightarrow (1). Let $x \in X$ and $M = \sup \{a(x) : a \in A\} < \infty$. Let $y = Mx_0 x$. Then $a(y) \ge 0$ for all $a \in A$; since S_1 is inconsistent, we obtain $b(y) \ge 0$, hence $b(x) \leq M$.
- (3) \Rightarrow (4). Let $x \in X$, $y = b(x)x_0 x$. Then b(y) = 0; since S_2 is inconsistent, there exists $a \in A$ such that $a(y) \leq 0$. It follows that $b(x) \leq a(x)$. (4) \Rightarrow (5). Let $x \in X$. Using (4) we deduce that there are $a', a'' \in A$ such that $a'(x) \leqslant b(x) \leqslant a''(x)$. If a'(x) = a''(x), put $x^{\#} = a'$; if a'(x) < a''(x)

MATHEMATRIA - REVIEW ARAS IN THEOREM AND AND THOSE THEOREM $< a''(x), \text{ put } x^{\#} = [(a''(x) - b(x))a' + (b(x) - a'(x))a'']/(a''(x) - a'(x)).$ Then $x^{\#} \in \text{conv}(A)$ and $x^{\#}(x) = b(x).$

(5) \Rightarrow (3). Let $x \in X$ be a solution of S_2 . Then $b(x) \leq 0$. Let $x^{\sharp} \in \text{conv}(A)$, $b(x) = x^{\#}(x)$. It follows that b(x) > 0, a contradiction.

Since obviously (4) implies (1), the proof is complete.

EXAMPLE 1. Let $X = C^2[-1, 1], A = \{[t_1, t_2, t_3; \cdot]:$

 $-1 \le t_1 < t_2 < t_3 \le 1$, b(x) = (1/2)' x''(0) for all $x \in X$. Then (I) is satisfied $(x_0(t) = t^2)$. S_1 is inconsistent, but $x(t) = t^4$ is a solution of S_2 .

Hence (2) does not imply (3).

3. For $x \in X$ let us denote by v_x the function

$$v_x: S \to R, \quad v_x(s) = a_s(x).$$

 $v_x:S o R, \quad v_x(s)=a_s(x).$ THEOREM 2. Let S be a connected topological space and suppose that for each $x \in X$ the function v_x is continuous on S. Then (3) is equi-

(6) For each $x \in X$ there exists $a \in A$ such that b(x) = a(x).

Proof. Since $(6) \Rightarrow (5) \Rightarrow (3)$, it remains to prove that (3) implies (6)

Let $x \in X$. Since (3) implies (5), there exists $x^{\sharp} \in \text{conv}(A)$ such that $b(x) = x^{\sharp}(x)$. Hence $b(x) \in \operatorname{conv} \{a_s(x) : s \in S\}$. The function $s \to a_s(x)$ is continuous on the connected space S; it follows that $\{a_s(x): s \in S\}$ is an interval. Therefore $b(x) \in \{a_s(x) : s \in S\}$ and the proof is finished.

EXAMPLE 2. Let $0 \le k \le n$ and let $X = C^k[\alpha, \beta]$ be endowed with the norm

$$||f||_h = \max\{||f||, ||f'||, \ldots, ||f^{(k)}||\},$$

 $\|\cdot\|$ being the sup-norm. Let X' be the topological dual of X.

Let $S = \{(t_1, \dots, t_{n+2}) \in \mathbb{R}^{n+2} : \alpha \leq t_1 < \dots < t_{n+2} \leq \beta\}$. For s = $=(t_1, \ldots, t_{n+2}) \in \mathcal{S}, \text{ let } a_s = [t_1, \ldots, t_{n+2}; \cdot].$

Let $x_0(t) = t^{n+1}$ and let $b \in X'$ be such that $b(x_0) = 1$. Then (I) is satisfied.

Using Theorem 1 we deduce that if S_2 is inconsistent, then S_1 is inconsistent. The converse is also true; see [2], Theorem 1.

COROLLARY 1 (T. Popoviciu). If S_1 is inconsistent, then for each $f \in C^h[\alpha, \beta]$ there exists $s \in S$ such that $b(f) = a_s(f)$.

Proof. Let S_1 be inconsistent. By the above remark, S_2 is also inconsistent. S is a connected subspace of \mathbb{R}^{n+2} and the function $s \to a_s(f)$ is continuous for each $f \in C^{k}[\alpha, \beta]$. Now it suffices to apply Theorem 2.

EXAMPLE 3. Let K be a metrizable compact convex subset of a locally convex Hausdorff space over \mathbb{R} . Let X=C(K) be endowed with the sup-norm and let tet di se processel denne te ir a utesca world direction

 $S = \{(t_1,\,t_2,\,c): t_1,\,t_2 \in K,\ t_1 \neq t_2,\ c \in (0,\,1)\}.$ Let $x_0 \in C(K)$ be a strictly convex function.

For $s = (t_1, t_2, c) \in S$ and $x \in C(K)$ let

$$a_s(x) = \frac{[(1-c) \ x(t_1) + cx(t_2) - x((1-c)t_1 + ct_2)]}{[(1-c) \ x_0(t_1) + cx_0(t_2) - x_0((1-c)t_1 + ct_2)]}.$$

Let $b \in X'$ be such that $b(x_0) = 1$.

By Theorem 1, if S_2 is inconsistent, then S_1 is inconsistent. The converse is also true; see [3], Corollary 1.

COROLLARY 2. ([4], Th.2). If S_1 is inconsistent, then for each $x \in C(K)$ there exists $s \in S$ such that $b(x) = a_s(x)$.

Proof. Let S_1 be inconsistent. By the above remark, S_2 is also inconsistent.

Let $\Delta = \{(t, t) : t \in K\}$. The product $K \times K$ is connected and $(K \times K) \setminus \Delta = \widetilde{C}_1 \cup C_2$, where C_1 and C_2 are connected components; we have $(t_1, t_2) \in C_1$ iff $(t_2, t_1) \in C_2$. Moreover,

$$S = [(K \times K) \setminus \Delta] \times (0,1) = [C_1 \times (0,1)] \cup [C_2 \times (0,1)].$$
 Let $S' = C_1 \times (0,1)$.

It is easy to see that we the season of the

$$a_{(t_1, t_2, c)} = a_{(t_2, t_1, 1-c)}$$

 $a(t_1, t_2, c) = a(t_2, t_1, 1-c)$ Since S_2 is inconsistent it follows that the following system:

$$\begin{cases} a_{s'}(x) > 0 & \text{for all } s' \in S' \\ b(x) \leqslant 0 \end{cases}$$
 is also inconsistent. But $s(x) = 0$

is also inconsistent. But S' is connected; an application of Theorem 2 finishes the proof.

REMARK. Applications of Corollaries 1 and 2 are given in [2], [4] we (and best dime to [1 V. or white rest! L'on these and (4)

4. Let B(S) be the space of all real-valued, bounded functions on S.

THEOREM 3. Suppose that for each $x \in X$, $v_x \in B(S)$. Then (2) is equivalent to:

(7) There exists a positive linear functional p on B(S) such that $b(x) = p(v_x)$ for all $x \in X$.

Proof. (2) \Rightarrow (7). Since (2) implies (1), we can use Erweiterter Maximumssatz of H. König [1]; it follows that there exists $p \in B(S)^{\#}$ such that

(i) $p(v) \leq \sup\{v(s) : s \in S\}$ for all $v \in B(S)$, and

(ii) $b(x) \leqslant p(\hat{v}_x)$ for all $x \in X$. Let $v \in B(S)$, $v \leq 0$. Using (i) we obtain $p(v) \leq 0$; therefore p is a positive linear functional.

Let $x \in X$. From (ii) it follows that $b(-x) \leq p(v_{-x}) = p(-v_x)$, i.e., $b(x) = p(v_x)$

 $(7) \Rightarrow (2)$. Let $x \in X$ be a solution of S_1 . Then $a_s(x) \geq 0$ for all $s \in S$, hence $v_x \geqslant 0$. It follows that $b(x) = p(v_x) \geqslant 0$. But b(x) < 0, a contradiction.

THEOREM 4. If S is a compact Hausdorff space and $v_x \in C(S)$ for all $x \in X$, then (2), (3) and

(8) there exists a probability Radon measure p on S such that b(x) = $v_x(s)dp(s)$ for all $x \in X$ are equivalent.

Proof. (3) \Rightarrow (2). See Theorem 1.

(2) \Rightarrow (8). The positive linear functional p on B(S) given by Theorem 3 satisfies $p(1) = p(v_{x_0}) = b(x_0) = 1$. Hence the restriction of p to C(S) can be identified with a probability Radon measure on S.

(8) \Rightarrow (3). Let $x \in X$ be a solution of S_2 . Then $b(x) \leq 0$ and $a_s(x) > 0$, hence $v_x(s) > 0$ for all $s \in S$. It follows that $m : = \min \{v_x(s) : s \in S\} > 0$.

Then $b(x) = \langle v_x(s) dp(s) \rangle m > 0$, which contradicts $b(x) \leqslant 0$.

EXAMPLE 4. (see also [1]). Let $a_n \in X^{\sharp}$ be such that

- (i) For all $x \in X$ there exists $a_{\infty}(x) = \lim_{n \to \infty} a_n(x) \in \mathbb{R}$, and
- (i) There exists $x_0 \in X$ with $a_n(x_0) = 1, n = 1, 2, \dots$

Then $a_{\infty} \in X^{\sharp}$ Let $S = \mathbb{N} \cup \{\infty\}$ be the Alexandrov one-point compactification of the discrete space [N. It is easy to verify that $v_x \in C(S)$ for all $x \in X$.

Let $b \in X^{\sharp}$ be such that $b(x_0) = 1$. From Theorem 1 and Theorem 4 it follows that (1)-(5) and (8) are equivalent. This means that the following statements are equivalent:

(1') $b(x) \leq \sup\{a_n(x) : n \in N\}$ for all $x \in X$

Marke (Z) in recourt thereof the force

(2') $b(x) \ge 0$ for all $x \in X$ with $a_n(x) \ge 0$, $n = 1, 2, \ldots$

- (3') b(x) > 0 for all $x \in X$ with $a_n(x) > 0$, $n = 1, 2, \ldots$ and $\lim_{n \to \infty} a_n(x) > 0$
- (4') for each $x \in X$ there exists $s \in N \cup \{\infty\}$ such that $b(x) \leqslant a_s(x)$.
- (5') for each $x \in X$ there exists $x^{\sharp} \in \text{conv}\{a_s : s \in \mathbb{N} \cup \{\infty\}\}\$ such that $b(x) = x^{\sharp}(x).$
- (8') there are c_{∞} , $c_1, c_2, \ldots \ge 0$, $c_{\infty} + c_1 + c_2 + \ldots = 1$, such $b(x) = c_{\infty} \lim a_n(x) + c_1 a_1(x) + c_2 a_2(x) + \dots \text{ for all } x \in X.$

- 1. König, H., Sublineare Funktionale, Arch. Math., 23(1972), 500-508.
- 2. Rașa, J., Sur les fonctionnelles de la forme simple au sens de T. Popoviciu, Anal. Numér. Théor. Approx., 9(1980), 261-268.
- 3. Rasa, I. On a measure-theoretical concept of convexity, Anal. Numér. Théor. Approx., **10**(1981), 217—224.
- 4. Raşa, I., On the barycenter formula, Anal. Numér. Théor. Approx., 13(1984), 163-165.