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REPRESENTATION OF CONTINUOUS LINEAR
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Abstract. In this paper we shall give some theorems of representation
for the continuous linear funetionals on smooth normed linear spaces by
use of the semi-inner product in the sense of Lumer [3] and Tapia [31,
and the best approximation in normed linear spaces by elements of linear
subspaces.

Introduetion. DEFINITION 1 ([3], [1] pp. 389). Let X be a real
or complex linear space. A mapping (,),: XxX — K(R, €) is called
semi-inner product in the sense of Lumer or L-semi-inner product,
for short, if the following conditions hold :

(i) (@ 4y, 2} = (», 2)p + (¥, 2y, @y, 2eX;
(i) (am, ¥)p = o(z, y), wekK, z,yeX;
(iii) (z, &), >0 if « #0;

(iv) (@, y)* < (2, @)y, ¥ )iy @,y eX;

(v) (z, My, = I(w, Y, reK, x,y X,

For the properties of L-semi-inner product, we send to [1] pp. 386 —
389, or [2] where further references are given.

DEFINITION 2 ([5], [1] pp. 389). Let (X, ||-]) be a real nor-

med 'linear space and f: X — R, f(z) = —2-||zv|[2, zeX,

Then the mapping :

RETS to) —
@ 9) = (Ve f)ly) -0 = lim LED =S, o,
i8 called semi-inner product in the sense of Tapia or T-semi-inner product,
for short.

For the usual properties of 7T-semi-inner product, we send to [1]
Pp. 389—393 or [2] where further references are given.
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In paper [2] we proved the following results :

LEMMA A. Let (X, |I-]) be a normed linear space and (.)
a L-semi-inner product which generates the norm || -||l. Then the following
conditions are equivalent :

) (X, [I-l) ¢s a smooth normed linear space;
(i)  for every x, y € X there exist the limits

lim Re(y, © -} ty), and lim et 1 t?;)r; — (@D,
i-0 10

LEMMA B. Let (X, ||-])) be a smooth normed linear épace and (,)p

the I-semi-inner product which generates the norm | -||. Then we have :
Re ) —
(1) (9, @) = Refy, a); — lim —22 W — (0 9

for all =,y e X.
The following lemma of L-orthogonality holds :

LEMMA C. Let (X, ||-1)) be a smooth normed linear space and (, )y

the L-semi-inner product which generates the norm || -|. If for every A e K,
we have ;

() oz 4yl > llell,

then

(3) z Ly ie. (y,a) =0.

Using the above lemmas, we proved the following two theorems
of representation :

THEOREM D. Let (X, ||']) be a smooth reflewive Banach space
and (, ) the L-semi-inner product which generates the norm | -], Thew
Jor every B a closed linear subspace in X and for all © e X, there ewists
o €¢B and '’ € % such that

(4) z = 1t a,
where E" denote the orthogonal complement in the sense of Lumer of B i.e.
the set {y e X |y L w, for all © = B}.

THEOREM E. Let (X, ||‘|) be a smooth reflexive Banach space
and (,), the I-semi-inner product which generates the morm | -||. Then
Jor every f € X* there exists an element u, € X such that : !

(%) (@) = (@, ), Il = llugll, @elkX.
In addition, if f # 0, then the representation element u, is given by :
Jw)
6 Uy == =
e "= )

where w e Ker(f)* and w # 0.
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COROLLARY 1. Let (X, ||-) be a smooth reflenive Banach space
over the complex number field. Then for every fe X*, there exists an
element u, such that

(7 J@) = (@, up)r —i i, ur)ey, | fll =l @ X.

COROLLARY 2. Let (X, ||-|) be @ smooih reflewive Banach space
over the complew nwumber field and (), the Li-semi-inner product which

generates the norm || -||. Then for every f e X* there ewists an element uye X
such that :
(8) f(m) = lim Re(’u’fi U "l' tm)L = ”“I“z _
-0 11
—1i lim Re(uf’ Uy - ltm)L , A ”ufllz
150 t

Jor all x e X and |f|| = ||u,].

DEF_INITION 3. The element xeX is called orthogonal in the
sense of Birkhoff over y e X iff |z 4 Ay > llz|l for all xe K. We note
that « 1 y.

Now, let G be a proper linear subspace not dense in X and

(9) Pe(w,) : = 1y, | lyo — @l = in(f; ly — 2 ll} < @,
ye

‘the set of all elements of hest approximation referring to z, e X\ @
The following lemma of characterization in terms of Birkhofi’s
orthogouvality holds :

\

LEMMA F. ([4] pp. 85). Let (X, ||-|) be a normed lLinear space,
G a lmeaTGsubspace in X, uoe X\ G and g,e@. Then g,e Po(w,) iff
Xy — gy L G

" D_EFIN'I’J.‘ION 4. The proper linear subspace B < X is called proxi-
minal in X iff for every v € X the set Pe(x) is nonvoid.

LEMMA G. ([4] pp. 87). Let (X, ||-I) be @ normed linear space and
H a hyperplane in X such that 0 € H. Then H is proviminel in X iff
there emists z € X\ {0} such that » 1 II.

’ Yor de_ta,ils concerning the theory of elements of best approximation
in normed linear spaces, we send to monograph (4] due to Ivan Singer,

I. Representation theorems. We shall begin our considerations by
the following lemma which completes Lemma C of L-orthogonality.

1.1. LEMM{X. Let (X, [|-]l) be a smooth normed linear space and
() t_he L-semz—mnm‘ product which generates the norm ||-|. Then the
Jollowing conditions are equivalent :

@) % Ly;
i) a Liy.
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Proof. The implication “(i) = (i) follows by Lemma C.
“(if) = (1)’. We ghall use the following result due to R.C. James
(see [4] pp. 85):

THEOREM (R. C. James). Let (X, - |)) be a real normed linear
space. Then the following conditions are equivalent ;

(i) ¢ L oaw -+ y;

(i) — (2, —9) < alw] < (a,9);

where < is given by :

(1.1.) oz, y) : = litrﬁ) HCII;FJ?IJ_—M , ¢,y X.

If X is a smooth normed linear space, by Theorem of James,
@ Ly if and only if <(a, ) =0 ie. (y, #)p = 0.
Let now suppose that # T y. It results (Ay, z), == 0 for all re K.

Sinee (Ay, #)p = 0 for all re K (because we have by Lemma B,
(A9, #)2 = Re()y, w),) we deduce that

2 + 1))l > |o| for all te R and re K,

from where results o | ¥ in the sense of Birkhoff.
The lemma is proven. ( y
Using the above lemma, we can prove the following result which
gives a generalization for Theorem D.

1.2. THEOREM. Let (X, || ‘) be a smooth normed linear space,
(, )i the Li-semi-inner product which generates the norm .||-H, and B a@
closed linear subspace in X.If ze X and o' B, then the following condi-
tions are equivalent :

()  There exists o' € B* such that
(1.2.) =g + 3,
(il) o' € Py(a).

Proof. “() = (i1)’. It &' : = o — &' € B, then by Lemma 1.1, we
have " IE(i)n the sen<e of Birkhoff and by Lemma F we deduce
that o' € (). ' '

Hil) - (1), If 2’ e Ze(w) it results @ —a’' 1| B ie. there exists
#" € B: = B" such that # — 2’ — " and relation (1.2) holds.

The theorem is proven.

1.3. COROLLARY. Let (X, | ) be a smooth normed linear space,
(s ) the L-semi-inner product which generales the norm and B @ closed
linear subspace in X. Then the Sfollowing 3entew,?es a::e equivalent
(i) for every we X there ewists o' € E and 2" e B such that
v =ua -+ a";
(ii) B is proximinal in X.
The proof follows by the above theorem. We omit the details.
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1.4. CONSEQUENCES. 1. Let (X, ||y be a smooth normed linear
Space and I a linear subspace in X such that Sp:={ge B| lgll < 1}

18 weakly sequentially compact in X, Then for every x € X there exists
@' € B and z" € B* such that (1.2.) holds.

The proof follows by V. Klee’s theorem [4] pp. 91 and by the
above corollary.

2. If (X, ||-]) is a smooth normed linear space and F is a finite-
dimensional linear subspace in X, then for every o €Y, there exists
@' €K and ' € E" such that relation (1.2) holds.

The proof follows by Corollary 1.3, since every finite-dimensional
linear subspace in X ig proximinal,

3. Let (X, ||-])) be a reflexive Banach Space with a differentiable
horm i.e. a smooth normed linear space, and 7 g2 closed linear subspace
in X. Then for every @ e X there exists o' e B and " € E* such that
& ="+ 2" (see Theorem D.).

4. Let (X, |[-])) be a hormed linear space and suppose that X*

endowed with the canonicgl norm -, \fll: = sup |f(x)], is a smooth
, lai[=1

normed linear space. Tt T' ig g linear subspace in X* and

(i) I'is o(X*, X)-closed in X*

or

(ii) Sp:= {ge | gl < 1} is compact in o(X*, X);

or

(iii) St is weak * sequentially compact ;

then for every J € X* there exists J'eT and f” € 't such that
(1.3) Flsig e por
The proof results by Corollary 1.3 and by Corollary 2.5, Theorem 2.2

and Theorem 2.3 of [4] Pp. 94 —95. We omit the defails,

Further, we shall establish the main result of this section what
gives a necessary and sufficient condition of representation for the conti-
nuous linear functionals on smooth normed linear Spaces in terms of
best approximation.

L5. THEOREM. Let (X, 1) be a smooth normed linear space
(s ) the L-semi-inner product which generates the norm |-, fe XN {0}
and g, € Ker(f), z, e X \ Ker(f).

Then the following sentences are equivalent :

(i) flw) = (a;, iw—oﬂf% — o) ) , seX;

I 2 _!]0”_2— L

(i i = Ll
1% — gl

(iif) 9o € Pxer(py(,).
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2.1. THEOREM. Let (X, ||-]|) be a smooth normed linear space, ( , )y
the Li-semi-inner product which generates the norm, G a closed linear subspace
n X, x,€ X\ G and g, € G. Then the following conditions are equivalent :

(i) go€ Palw,);
(it)  for every fe (G @ [x,])* such that G = Ker(f), we have

¥ f(wo)(w;@ {
(21) f(-’,U) i (m7 Hm() ol gOH2) )L’ WEG @ [wo];

(iii) for every fe (G ® [x,])* such that G = Ker(f), we have

@
(2.2) Il =
Il 2o — gl
The proof follows by Theorem 1.5 for the smooth normed linear
space X, =G @ [x,]. We omit the details.
Finally, we have :

2.2. COROLLARY. Let (X, |‘]l) be a smooth normed linear space,
G a closed linear subspace in X. Then the following sentences are equivalent 3

(i) G is prowiminal in X;

(i) for every woe XNG ond fe (G @ [«])* such that Ker(f) = G, there
exists u,, 1€ @ @ [w,] such that:

(2.3.) fle) = (2, te )y, 2€G D [2]y;

(i) for every w,e X\ G and fe (G @ [z,])* such that Kex(f) = G, there
ewists wy,r, € G @ [©,] such that

2.4) [frn)| = [Ifllcoue [[Wrrll-

r
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