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Abstraet, In Lhis paper we establish some IKorovkin-type Lheorcms in Lhe space #(2)({a, b}),
for the identity operator and, more generally, for finitely defined operators. Several examples
and applicalions are also presented.

Introduetion. This paper is mainly devoted to studying those sub-
spaces H of € ([a, b]), the space of all p times continuous (hﬂel entiable
real functions defined on an interval [a, b] (p > 0), which satisfy the
following condition

Jor every sequence (1,).ew of linear posilive operators on

@O ([a, b)) such that Hm Ty(h) = h 0 €V([a,b]) for every
n—oa

heH, one also has lim T.(f) = f in €4 ([a, b)) for every
#H=+00

[ C¥([a, b]).

(*)

Here for positive operator we mean an' operator which leaves inva-
1iant the cone

K, = {fe €M ([a,b]): fla) >0, f(a) > 0, ...,]¢=%a) > 0, f® > O}

The most important results in this direetion, orin some other volat-
od to it, have been obtained by B. Brosowski ([6‘]) H. B. Knoop-P.
Pottinger ([10], [17]), G.I. Kudryaveev ([11]), Min’kova ([13)),
B. Sendov-V. Popov ([20]);:S. Stadler ([21]), A, A \dsll’(,bnl\o ([22]).

In the fu“st part of the paper we completely characterize property
(*) in terms of envelopes and Choguet boundary.

Moreover we alzo study a property similar to (¥) by replacing the
identity operator with more general operators which are called finitely

defined operators, in: analogv of similar operators studied in spaces of
continuous functions.

Finally, in the same spirit of the previous sections, the convergence
of sequences of pomtlvo linear forms on €®([a, b]) toward discrete-type
positive linear forms, is also investigated.

Several examples and applications are presented.
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1. ‘Préliminaries’ and definitions. Let p >0 andlet’€®([a, b]) be
the space of all p times continuous differentiable real functions on the veal
interval {a, b]. Liet || + || denote the sup-norm. We shall consider the space
EP(|a, b]) endowed with the norm (whichis equivalent to the usual norm
of ¥7)([«a, b]))

1£lly = sup U Aa), [f(@)]s .., 1f 2 a)], 1FN}
and with the' order with 1Lspect§ to wh]dl the posnn ¢ ¢one is
K, ={fe®™([a,b]):f(a) >0, f'la) > 0, AT eFV(q) 3 0, f® > 0} =
= {f e 2 ([a, b]) s f >0, f" -,f“’ D >0, f® > 0.

The key idea of this paper is to represent the space €®([a, b)) as
a space of continnous funetions on a compact space.

In fact the space ‘6“’)( [a, b]), endowed with the norm || - ||, and the
01(161 above indicated, is an A M-space with unit the function 11,( L

= Z (t—a)/j!, t e [, b]. By the Ixakutam representation theovem ({197,

Th 7 4), €"([a, b]) is order isomorphic to the space %(X,), where X, is
the weakly compact set of real valued lattice homomorphisms of norm
1 on €0 ([a, b]).

(Eh v e ) iy Loty A STl 1} U {p:tela, b where for all,

fe (6"’) l'a bl), tela,b) and j = 0,1, ..., p—1, u(f) = f9(a) and u,(f) =

of Mox ¢ simply, we identify X, with the subset jwg, oy - ..y 0y} U
UJfa, ] where o; e IR g <ty <(oz, , < @, endowed with the usual
topology ;

1101 p >1 the order isomorphism g0 fg(”)( [a,b]) = €(X,) is defined
by Jpflw) = fPa), ] = 0,1, ,p — 1 and J,f(t) = f®L), t € [a, b].

IL% inverse i the opowtm A,, L B(X,) =B ([a, b], defined by putting
for all g e @(X,) and s € [, b] :

721 glo) e S v
Ayg(s) = (s —a)f - ——— € (s — )P g(n)dd.
LOTH e Uit K R0

For p=10, J, and A, coincide with theidentity opcrator on €([«, b]).

Let 1': €P([a, b)) — P ([a,b]) be a positive linear: operator,i.e.,
T(K,) cI(, Let H be a linear subspace of ¢®)([a, b]) which contains a
function 7, with AQ(a) >0, 4= 0,1, ..., p — 1 and AP(t)> 0, t € [a, b].

Let us define the 7-Kor ovkm (,lo.smc of I (with respect to positive
linear operators) by Xorp(H) = {fe ¥¥)([a,b]): || Tuf — Tfll» — 0, for
every: ,soqucncc of positive hnefu operators l’,, %’”)([a b]) E9([a, b])
such that {| T,h — Thil, — 0 'for-all h c .

It T'is the identity operator, the (,011(351)011(11]’10 Kor 0Vk111 closure of
H W111 be: denoted simply by Km(H)

" H i$ called & T-Korovkin mbspace of €®([a,b]) 1f K01T(H)
*g(”’([a b1). A seb S @) (|a, b]) i dalled a T-Korovkin sebif the linear
subspace of €®)([a,b]) spanned by 'S is a ' T-Korovkin subspace.
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Looet P B(X,) - 9(X,) be the linear poesitive operator defined by
P =J,T A, and put V = J,(H); V isa linear subspace of €(X,) which
contains the strictly positive function J »lg-

Considering the usual ‘order and- the:sup-norni in #(X,) we define
analogously 1&01 (V) and Kor( V). Then we have

(1.1) Korp(H) = Ay(Korp(1))
(1.2) - - Kor(H) = Ay (Kor(1)).,

Denote bv M (X,) the set of all positive Radon measures on A
For every o € &, let 8, be the Dirac meagure ab ». In that follows we
shall use the following result (see [12], Th. 1.1). ‘

TuroreM 1.1. The following statements are equivalent:

a) V is a P-Korovkin subspace of €(X,);

b) ©=38, 0 L for all o € &} and.v e M, (Xy) for which v=3, P on V.

Finally, using the norm || -, we deflnc similarly the Korovkin
closure of [ with 1'espeot o linear contractions on €®([a, b}) (sce [4]). By
applying Cor. 1 of [4, p. 167] and (1.2) we obtain that a linear subspace
H of ([, b]) which containg 1,is a Korovkin subspace with respect to
linear contractions iff it is' a Km ovkm \llb\'l)(\:( e with vespect 1o positive
linear operators.

2. Korovkin-type theorems ior the identity operator. Characteriza-
tions of Kon( I’) in terms of envelopes, quasi, peak points and (‘hoquct
boundary are given in [4]. Using (1.2) and these characterizations it is
not dlfh(ult to pr ove. the Io]lowmo Tesult.

TarorEM 2.1. Let H be a:lindar Subspace of (K“’) ([a, Z)]) 'u,lnch con-
tatns a function by such that > 0, =.0,1,...;p — L and h®(1) =0,

_’z € [a, hl. The following .smtements (@ ), (b)), (c) are cquivalent :

(a) H ts a Iorovkin subspac() T %“”([a bl). - ‘
(b) Ior all fe EP([a T)J §ed0, 0y o oyp — AL and te |a, b,

j‘” @) = sup {7_1“) a) heH, f = he K,
— inf {h(a) s SV A PREES AN

JOUD = sup M ”)( ) ) e][ f— hell,}
= inf rh"”( ) hell, h — [ eI}

Wy (e ol 1/‘ t clla, 1)] dnd nois.a poswme hm’a) Jormon €| a, b)) such

that i(l) = W2(1) for all he ]I then p.(f) = 720 for all e € ([a, b]).

C o i(ey) Lor all jedfo, 1,00, p — l‘ and for aZI positive linear form

on GP[a, b]) such that u(h)—h“’ jo) every ‘ho e H, 4t follows that y(f) =

= fW(a) for all fe (tf“’)([(‘t h). el |
In fact, (¢q) 1s (’qmbaluu to

(e ) oyt all §ie {0, 1, y » — 1} theve 4s b€ H 'such that 19 (a) = 0,

' :":"“(rr)> 0, 4 e 0 1 = APNGY and AP >0, e [a, bJ

The proof is l)%ed on 1]1(3 (,ham'zu serization of the (‘boquot boundary

of V in: terms of quasi peak points given in [4], Th. 8, p. 176 and

on the topological properties of X,,.
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Remark. The equivalences (b) < (¢) and (a) « (b) generalize Theo-
rem 4 and Theorem 7 of [6].

CoROLLARY 2.2. Let S be a subsel of €@([a, b]) whick conlwins the
funetion . Then {l,1, ..., 7~ y 8 s a Korovkin set in G® (e, b]) if
and only if S®= {f® :fe 8} is a Korovkin set in €(la,b)).

Brample 2.3. Let I ¢ €7 ({a, b]) be such that h® is strictly convexr or
strictly concave on [a, D). Then {1,1, Lo g ds @ Korovkin set in
EP([a, b]). '

Raoample 2.4. Let 0<a< by 3>0, u>0, AFu. Then {1,1, .. .17, A
7+ is a Korovkin set in € ([a, b]).

Baample 2.5. Lot a,b e R, a <<b. Then the sets
(2.1) {103, 8 e 82,1002, 1R4E)
(2.2) (1,1, ..., 12, €, 6%}
are Horovkin sels in €({a, b]).

Remark. For p = 0, (2.1) reduces to the classical result of P.P.
Korovkin concerning positive lincar operators on E([a, b)).
For p = 1 (2.1) is a consequence of Theorem 7 of [6].
"The tesult contained in Bxample 2.3 can be gencralized in a more
general situation.
Tn fact, given m €N, let
A" = {feClayb]): [ty --ortu3f] 20 for all a <t < ..
oo <t € BY ([toytrs « o9t i) is the divided difference of f).
Let e €P([a,b]) n A7 and let H be the linear subspace of
€ ([, b]) spanned by 1,4, ..., 17 k. Let
T ={lc[a,b] : Jisa maximal eclosed interval on which A® is linear}
“and let V = J(H).
From [3], Proposition 7 we deduce that
Kor(V) = {f € €(X,) : f is lincar on each Ie7}.
Using this result and (1.2) we obtain =

Paporem 2.6. Kor(H) is the set of all f € €¥([a, b)) such that @ is
linear on each I T .

3. Determining subspaces for positive linear forms. We recall that,
given a positive linear form u : €@ ([a,b]) - R, a linear subspace H of
@P([a, b]) is called a determining subspace for p. if for every equ conti-
nuous sequence (wa)wew of positive linear forms on €®([a, b]) such that
lim pa(h) = p(k) for every h e H, we also have lim p,(f) = u( f) for every
Q0 s n—200
fe€?([a, b]).

As indicated in [1], this property is equivalent to the uniqueness
of the positive extension of w on H (i.e. if v is a positive linear form on
€®([a, b]) such that v =y on H, then v = w).

For a characterization of determining subspaces see [1], [7 IL

Let » be an integer, » 2 p — 1,

f APPROXIMATION BY POSITIVE OPERATORS 5

Let us consider a function h, € ) ([a, b)) such that :

) it w3z p, then [y, by o oy lary 3 Ba] > 0 Tor alle € 1, <...<<Tuyy <b5
) if w = p — 1, then AP(t) > 0 for all ¢ €la, b].

Let H,, be the linear subspace of %([a, b]) spanned by the funetions
i, ...,1" h,. We shall prove that H, is @ determining subspace for
some positive diserete linear forms.

3.1
(3.2

TarorEyM 3.1. Under the above assumplions, let A : €([a, b]) — R
be @ continuons linear form such that A(f) = 0 for all € Ky, and A(f) =
= @ for all f € H,. Then A = 0.

Proof. Suppose first that » > p. It suifices to prove that A(g) > 0
for any ¢ € %™ ([a, b]) n A+ and to apply Theorem 1 of [18].

Tor every m e [N let 7T,f be the zero function it m = —1 and the
Taylor polynomial of degree m for f and the point «, if m > 0.

a)Hge &+ [(a, b)| n AL, then gD > 0. We have ¢ — Tug e
€ I{,y, and hence A(g) > A(Tyg) = 0.

L
b) In the general case for every j > Llet by = ¥ i g( k a1 —,
k=0 "
— )% he the j-th Bernstein polynomial of g€ %P([a,b]) n A L
Then ||b; — ¢ll, — 0 and by e €0 ([a, b]) N A7, From a)it follows
that A(b;)) = 0, hence A(g) =lHm A(b;) > 0.

j-rco
Suppose now that » = p — 1. We have A(f) = 0 for all f € I, and
A(f) =0 for all fe H,_,. Tet b = by y— Ty 1 oy For fe €P([a, b]) let
us put
iy = min {f®() :te [a,b]}, M, = max Ifot) 1t e e, bl}.
Then 0 < m, < M,. Let g e % ([e, b]) and let
- .,m,,«—*[

f M
fi=Tsy9 by fo = Tu 19+ =% k.

'I’n/h

e
" M,
Then q —fl € er fz —gEe ]{in .fu fz € Hw—l'

1t follows that 0 = A(f,) < A(g) < A(fy) = 0,1.e. A(g) = 0.

Tet now & > 1 be an integer. Define p. : €®([a, b]) IR by putting,
for every [ e € ([a, b])

p—1 y R
(3.3) wlf) =% af ) + Y, &),
i=0 j=1
where ¢, > 0, ¢; > 0and ¢ < 1, < ... <l < bare given real numbers.
A
x/“ k
Let oft) = 1if t € {a, b} and o(t)=21if t € ], bl. Write m=Y, (sign ¢;)a(ty)

je=l
and let » = m 4 p — 1. :

For f e €®(|a, b)) and > 0 let us consider the functional X of J.
Peetre (see, for example, [9], p. 4):

K(t, f, €P(a, b)), €+, b])=inf {|f—gl,+Htlg"*" ]9 € " (a, b}
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If v e (8P ([a, D)) 'then ve (FV{(a, b)) ; let || v, and Hv{lhsy Pe the
corresponding norms, clearly equal.
Let P, be the hno'm subspace of BP([a, b]) sp(mnod by 1, ¢, t“z

Toeorem 3.2. Let I : €9([a, b]) = R be @ positive (and he'nce con-
tinwous) linear form.

@) If L=y on Py, then for all [ € B9 ([a, 0]) =
(34900, 1 L L(f) — D)
(I — p)(+)]
(i Lllp - faelln) (2 1)1

by If L=y on Hy, then L= p on €0([a, b]) Frence I, 1s a determin-
mg subapucf’ /01 every posiaive linear form, of type (3.3).

Proof. a) Suppmo that I ="' on P,. Let A=y — Land let fe K. .
If m >0, let us denote by ¢ the Hermite polynomml of f® for t; with multi-
1)11c1t1es (%]_[)11‘ ei)a(ls), j =1, y ks then degree(q) < m — 1.

T om = 0,let g be tho sevo function on [a, b].

C O Suppose that ey > 0 and dy ==b, Then ¢ >,m’) Let o be the poly-
pomial (of degre¢ < n) for which m“’[u = fO(a); v.=20,1, ..., p — Land
o® = gq. We have o — f e, hence L(;'} CL(m) = u(o)) = u(f). It fol-
lows that 4(f) = 0,, hence.. A is Ky~ 1)0&11,1\0 angl Ao /\,,+l is & pU\ltl\(J 1i-
nofu forim. on ((’(J 7 u)

Tf e, = 0 or f < b, then ¢ < ]’“’) B) ruﬂumo as above we 111{1,1 that

AoA,Z +y 18 & positive hnom form on K(A,Hl)

S (Ll ) [ v J A [f"? b1), ’g(nfrl’( L, Z)J)] *

' 1 .
We conclude that || Ao,y =] e Anﬂ( Y= 4 (,]nﬂ) :mfi(t +,
Sincel A iy = LdoAu il it follows that
B | BN 1 i ntl
{3.5) A it = ((|)—| A(rh L

Lot mow T e ¢P([a, b)), g e €V ([a.b])! We have
! A(/])}S EA(/* jn(/)l =+ | 1(Tﬂ(/)i ! A in+1”g_ T'IL.(/HM-H =

(!
(n~+1)!

Ay gD, LA <A — 9]+ |1< l<|| Al — gl

o LA g 0 T+ L1~ 9l +

(- 1)!

I(L Ta ")(171+1)‘\ r((n.+1) )
WAl g2 )
i Ml =1 el Yo 4=, 1)1

Taking the infimum when g.e €*+([a, 0]), we have a).
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b) Let L=y on H,. Then L =yp on P, and the. above  proof
shows that A is K,,Jrl -positive or. —A is K,Hl positive. In both cases
A =0 (e¢t. Th. 3.1). .

Remark. For p = 0 and # = 1, (3.5) has been provedin [8]. (3.4) is
similar to some inequalities given in/[8] and' [9].

. Korovkin-(ype theorems for finitely defined operators on €9 ([a, b]).
Let” 17 >0 and k& >1 Dbe  fixed. Lek us  cousider | an  operator
T (@f“’)([a b]) — €¥([a, b]) defined by putting tor every fe @¥({a, b))
and s € [a, b],

5 (s —ay

= ; [Z a“ (/) (l + Z Ciy f(m ] 2 I' 4

(4.1)

-+'_.1-!§<s - ﬂ[w ' -5 J“'“vlb]d_t

(p—1)! =0 i=1

where a;, > 0, ¢, = 0,050, € C([a, 0]),0; = 0,9, 20, (I) ]a, bl - [a, b|
is a continuous function and w, € [¢,b] for all ¢ =1, ...,k and j,7 =

k )
T Ot s p= 1 (Forp = 0, 206 = 3 @@ 5)).

AT is agpositive linear operator and hence it is continuous with res-
pech (o || - [lp. Liet P =J,T Ay, P isx a positive, linear, finitely defined
operator 'on €(X,): For' aunqyloﬂv, ‘we shall call the oper ator 1 & finitely
defined operator ‘'on P ([, b}) of'order k. (l)Of]]llthIl\ and general results
concerning finitely defined operators ave given in [2]. O ounmbly detined
operators. are defined and studied in [7]).

PuroreM 4.1, Let T be a fintiely defined operator on €% (fa, b]) of
order I of the form (4.1).

5 SR 1
: Putiom = lri'&\ Z sigh ey) calay )i =01, oo oy P ].} s
Lokt R liz= 1 [RVAT

by ‘
Hl, = 1Max (sign a(®,() tela, D m = max {my,mit.
2 ‘(/a, Wy 5 Uiy 24

(then 0. < m < 2L) Let n. = - p — 1 and let H, be the linear subspace
of €@ ( [(o bl). dG.SG} thed in S()cnon 3. Then JI 15 a T-Korovkin subspace of
G ([a, b))

<+ Proof. Let V,, =.Jp(H,). Let ae X,and ve M, (X,) such that v =

= 8 oP on V,. It follows that! ved, = 3,0 o 2 on H,. Denote ved, = L,

po I == ooand avpplv Theéorem 3.0 D)5 it follows' that ved, = 3,0d po T

on %“”(La h1), i.v, v =8P on %(\,). Using Theorem 1.1 we obmm
Korp(V,) = €(4,) and now (1.1) implies hm”(ﬂ ) = €Y[q, b]).
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CorotArY 4.2. Fix p > 0 and let us consider for every q=-0,1, ..., p
the linear positive operator T, : ¥ [a, b])>CP([a, b)) defined by putleng

for every fe%®([a,b]) and secla,b]

1 q  f@) @ )
2ie) = 50 .
70 .
Then
(1) {1, ¢, ..., ®} s ¢ T,-Korovkin set of €®([a,b]) for every
¢ =01,...,p—1;

(2) 14, b ..., "} ds a T'y-Korovkin set of € ([a, b]);

(3) 41,4, ..., 1272 4s a (I— Ty,)<Korovkin set of €V ([a, b]) for every
¢ =0,1,...,p — 1 (where T denotes the identity operator on €([a, bY)).

Proof. In fact, for ¢ < p — 1, 7, is a finitely defined operator on
%®([a, b]) of order 1, where g, =0, ¢, =0, by =0 for all j, » =
=0,1,...,p —1 and ay = ... = &y, = L and az= 0 otherwise. In this
case m = 0 and » = p — 1, so the conclusion follows by Th. 4.1 with
b, =t7,

X In the case ¢ =p, T, is also afinitely defined operator on €@ ([a,b])
of order 1, where a;,= 8, b; = 0 for every jyr =01, ..., p — 1, ¢, =0,
#y =1, ®, = a. In this case m = 1, n == p and so we have the result with
Ity = 171, .

Y Thelast case can be similarly proved since I — 7, is obtained from (4.1)
with k=1, ¢, = 0, b;=0, g,=1, G ()=t for every j,» = 01,..., p — i
and te[a,b], tpygry = -+ = p1,p.1 =1 and a; = 0 otherwise.

Baample 4.3, Let w > 0 be o fixed real number. Let us deiine
TP %([0,a]) — €([0, a]) as follows: tor fe%([0,a]) let
. LA )
1) — —\ o @
a
0
it x €]0,a] and LHf(0) = f(0). _ ,
Igeé _J'p > 0. ﬁlijt(n')eac/lfl I e €™([0, a]) we have I['fe 45””([}0,' al) (see
[157, 2.5.8). Let us consider the operators L} = 1%, Iy = L —L'{—lv v 22
Then I are K ,-positive linear operators (see [15], 2.5.9). It is casy to
verity that || T¥L — 1|, — 0 and [ I4¢], — 0for j =1, ...,p. By using
(1) of Coroll. 4.2 with ¢ = 0 we obtain

|1 f — f(0)[, — 0 for all feE®([0,al).

Tor p = 1 and p = 0 this result is contained in [&]. Theorem 1 ; sec
also [14], Th. 1 and [16], Th. 1. Moreover Tolgerung 2.19 (iv) of [9]
yields :

L , k) wlp - 2>)"2 ( .(Ji__)”z)
Ty — < 4ol f, & - 2 Pre oyl fy @ i
Haf(w) = JO) < Ao, (f %((L -+ 2) ) X ( (p 4 1)° p- 2
(4.2)

for all fe<([0,a]), x<[0,a] and 7 > 1.
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In the sequel let p > 1,k > 1 aud let S be a subset of ¥®)([q bl
which contains the funetions 1,1, ..., " L Suppose that for all (liStinct
points iy, 4y, ...y & & [a, b] there is fe 8 with f®(1) #fP ), 4 =1, ..., k.
For fe€?([a,b]) let us denote ’ ’

A\l PV (£ @)™ 'j 1 t
[jJ (t) :jgo g—ﬁﬁ (t — a)y 4+ {hp—._—h]?s(t . S)p—lff(p)(n?))mds.

Let [87" = {[f1" : f< S}. Let H%bethe linear subspace of €@)([g b})
spanned by {1,} U S U {812 U ... u [S]*. ‘ T

THEOREM 4.4. H¢ is a T-Iorovkin subspace of €9)([a, b]) for cver
finitely defined operaior T on €P([a, b]) of order k. U
Proof. Tiet T be a tinitely defined operator on € ([a, bl) of order
I of the form (4.1) and put P = J,T A,. P: €(X,) > €(X,) is 'a posi-
tive, linear, finitely defined operator of order p <+ k. More precisely, for
© . ) otk _ : CCISCLY
all B e®(X,) we have P(F)= Y dFon), where &, e €(X,), ¢ >0,
»-=0 B
M(#) = w4y € == 0,1,000,p — 1y e e X, and

)

ZTyyy &= o j=0,1,...,p— 1
vttt BT {¢>@<’m>, e gy iy 1
for all ¢==1, ...,k
lbﬁ_Llet Vo= dJ,(HE). Let aeX,, ve M (X,), v=28,oP on V. Then
v =Y ado - ar, where a, 20, t=0,1, ..., p —1, e >0 and
Ae Mo([a, b]).
Since v = 3,0 P on V, it follows that the equality

P p=1 p—1 &
(4.3) Y ad0,Foh =Y G(@)30, -+ Y Yl #)8
2==0

=0 $=0

holds on V. Using appropriate functions from V {(see [2], Cor. 2.5) we

can prove that (4.3) holds on %(X,). Applying Theorem 1.1 and (1.1)

we conclude that H§ is a T-Korovkin subspace of “®([a, b])
For & =1 we obtain the following result.

) COROLLARY 4.5. Let § be a subset of €9 ([a, b)) contwining the func-
tons 1, 8, ..., 177 and such that 8™ separates the points of [a, b] (cf. Coroll.
2.2). Then {I,} U S U [8]* is a T-Korovkin set of €®/([a,b]) for every
Jintlely defined operaior 1 of ovder 1, and, in particular, for the identity
operator. U



i0

=1+ Then HE is the subspace of €V ([a, b]) spanned by
g ) ' i \ I \
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; Mligs ;
Baample 4.6. With the same notation of Th. 4.2, let 8 = 11,1, R

£ty ..., N

If 8 = {1,¢, ..., 02”}”;] then HE is the subspace of €®([a,b]) span

ned by {1;(ty 00,1006 L e ]

In both cases IT1L is a T-Iorovkin subspace of €™ ([a, b)) for every fine-

tely defined operator T on €P([a, b)) of order k.
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