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1. Introduction. The problem of uniform approximation of func-
tions with a finite number of derivatives by polynomials with integral
coefficients (see pp. 125 —138, [1]), is more complicated than the problem
of unitorm approximation of continuous functions. It scems that in order
to get a good approximation we need to impose a number of conditions on
the function. The best results in this respect are due to A. O. Guelfond
[2] and R. M. Trigub [5]. For the standard notions of the theory of appro-
ximation by polynomials with integral coefficients we refer to the book
by Le Baron O. Ferguson [1].

In this work, we stablish, a generalization to n-variables of a theorem
of A. O. Guelfond (p. 54 [2]). To this end we give some inequalities of
Markov-Bernstein type for polyhomials of several variables with positive
coefficients in a; and 1 - ;,in the cube n-dimensional 0 < 2, < 1,
{=1,...,n, (see [3]).

The statement of the theorem is as follows :

TaroreM 1. “Let (ay, ..., w,) = fIX) be a continious Sanction,
with continuous s, first derivatives with respect to each x;, on n-dimensional
cube Dy:0 £ @, 1,0 ="1,...,n. Let
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. l a .f(“’_]! vy 1tn) g i 1 ; ~/(kl (‘M) 0 § k{ § S[
A & o Kn - K CPRNY. -
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cj,ll mg > M, such _tlz.a;t my = O0(my), T =1, ..., n, J=1,...,n, then there
s, a polynomial with integral coefficients Q(X), of degrees  my, with respect

fo each @, such that, in: the n-dimensional cube D, : 0 < B Lt=1,...,n
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the followhﬁ bound holds

| BeL L ) ( 1 ) !
lf/gfz...,k”(X) — Qg?,;.,,kn(X)f < C Z “\m, m,
VT mii "

Jor all 0 <k < 85, with b — ky = oo o Touy where C does not depend on

My, t=1,..., 0" ,

Theorem 1 first appeared in Guelfond’ [2]forn = 1. The n'= 2 case
was. shown' by’ G. Al Zirnova [6]. Although the techniques employed are
much in the same spirit as the ones used in[2]-and [6]; the additional
difficulties which arise for » > 2 require some technical adjustments
which may be of some independent interest.

2. Proof of Theorem 1. The proof of this theorem being tairly com-
plex, we have to premise the following lemmas.

Lreuya 1. The following holds-

_ ar a0 okl ' R LI A
1 LTl — @) | = ——— [as (1 — gy e
(i Lt AL b @) == = [0(L — ] sy
where we take 0° =1, for all e [0,1]; and :
(2) dr [,61173(1 ’I/’)s] pe n¥ T?z—s(l w)s 0< 2 <1
ko TR R ) ROy
Proof.l Applying  Leibnitz’s formula, we get
1% - (1, — s)1g!
l [w"_s(lh w)s_l it Z i k -(n S) i8S . mn_s—v(ll_ J))S—,—k'*' X
| da* - v=v, VI(k—2) {(n'—s—v)!(s —Fk4- ) ! ol

Vo = max (0, k — §), v, = min(k,n — s)

On the other hand, the maximum of 21— )4 iy attained at

n—8 —

w—k
being equal to
max [ 7Y — g)*E0] — (B — s =, 0)P~"""8 — kA o)+
0gxgl (n . k)n—k
and since

{(n — 8)ls! \! us
< (n—s8)%
(n—s8 —v)l(s — &k - v)! ( ) ’

we then get : _ _
ol [l — )] | < $o PHO—8)S ™ n — 5 — )" %(s — ko o) Fte
i dmk i A = Ll
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<y (k Jﬂ —S—)—S = —(:T-lm—-,q)——&, for all .@we [0, 1] e
L Cy=p \ D (’n — 7‘})”"‘7‘ I(ﬂ‘ s /G)n—lc
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With regard to the second inequality,

U
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vy 8 — 1! , 5
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k
M@l — @y, for all lwe(0, 1).

(1 — m)’"‘xkt

Remark. Tt i clear that of (1), we can write

s

(3) [a*75(1 o @) 1= 0(n*7%), for fixed & and s.
’ da¥ % '
LesisA 2. Let
(4) P(X) == % .o d j ('(,vl..__v”(],:ll}l Ny, (1;:;.1;-(1 bt .’l?l)ml_vl LTA}s (l | m“)mn—un
v,=0 v, =0

he a polynomial of degree total m, and degrees m, with vespect lo each i
with po:s*itifue coefficients dy,..v, 2 0, such that in the n—dzm,eﬂ:.swwal cube
0 Sa;, $1,1=1,...,n satisfy the tnequality P(X) < 1. Then
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where b = k4 ... +lay 0 Sy Smyy, O0<< oy <1, 9 =1,...,n,

Proof. 1
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the last inequality by (2). The theorem follows from this last expression
by simply bearing in mind that
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LEMMA 3. Under the conditions of lemma 2, then

] P w(X)| < Zmy(my + 1) ... mn(m, - 1)
J3tenshiy (7"/1 AL 7".1)7;;1—1\:1 -1, ("nn —_ ]b.n)mn—k”
where b= liy 4 ... +kyy, 0 € Ky < iy, 0Osx®mslt=1,...,n

Proof. It is easy to deduce that

My Y m M My Y'n m Y=
CYURNPT LY L o T
() my — 9 Vn My — Uy

for 0 s v, S my, t =1, ...,n; where if some v, — m; or v, = 0 we take

(3

(1& v (__"ni_ my—vy b

Reasoning with similar method as in lemma 2 and applying (1) and
(5) the lemma follows.

If in the tast lemma we impose some restrictive conditions on the
coefficients of the polynomial, the result can be improved, using similar
reasoning. We prove the following technical result.

Lemma 4. Let P(X) be the polynomial in lemma 2 with total - degree
m > g, M= O(my), ¢ =1, ..., n. If there is an arbitrary but fized n-tuple

(Spp v oy Sn)y § =8 -+ ... 48, 8 =1+ min s, such that
lgign
(6) oy S WYY 8+ 1 S0, SM —8,—1, ©= L...n
and, . . |
(7) .a’"r--”n § m'e

Jor those coefficients that have at least one s; +1 < v, < my, — s; — 1 but
not all ; then tn n-dimensional cube 0 € w, S L, ¢ =1, ..., nfork = 1,.. .y 8

(8) | P X)) < Omby =Ty 4o ke, OSK <5,

where C does mot depend on m.

Proof. Let ug divide | Py :.(X)| into three summands Sy, S, and S,

In the first sum §; the index o, runs over all 0 € v < s and
My = 8 § U § My, for v =1, ..., n. In the second sum S, the summands
corresponding to the index s 4+ 1 v Sm —s —1,...,8 +1<
£ % § Me — S» — L; whereas in S; the sum is taken over all the other:
index. This means that in 8; some subindices v; vary like in S;, whereas
other v; vary like S,; in other words, there are some », such that either
0 sv 8 o0 m—38 <u S m and other v, such that s, 4-1 < v g
§ my — 85 — 1.

Liet ug now proceed to the bounds to each of these summands.

Applying (5) for the coefficients and (1) for the partial derivatives,
we gelb '
) RS YIS ) < Ot

I v, (’7721 = kl)ml_kl : (777'1z L ]Cn)mn-—-kn

2kugn 2 miyn
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For the summand §,, the coefficients are bounded by (6) while forr
the partial derivatives we apply the bound (see [2])

m—~—s—1 dln: 1 : -
(10 ) [t — )] | = O(mE Y
( ) v==s+1 da® ]
(11) |8, < m " [1 0(my™ 1) < CymP.

t=1
Finally, for S, we use the bound (7) for the coefficients, and the
bounds (3) and (10) for the partial derivatives.
‘When bounding
6"[}1‘?‘ L ’I‘:“(_I. ot a,l)r::,—;rl_ h (1 11X ‘.Ir-“)m,,—wn]i
(12) 4=%..Y% Py |

% ’n

we will find in cach term, groups of n tactors 'of two types

¥ O and, Oy~
Il,t
with 0 < v, < §;. Let us group these terms in the followin% way : all those
=|Vr = ) * g i i i
with only one O(m}™""), those with two, Oy ") and O(m;! ), andfoll_o\w—
ing in this way, up to those with (n — 1) factors of this first type. For
the bound for (12) we proceed in the following way :

4 < Z [ X\: 0((mk—v,‘l“'f.s_sh)—(n_l)):I '_l"

dy== ”i1=0

LT, U ) otz Be(ug b ) —(5—85 —5; ) —{1—-2) |
+ [ y O ™0 1 Y-F o
e[y 5

iy=1 fp=1 v,i1=0 Vi, =
iydy
S
n » 5§y in--1 k—(v; 4 ooty )_(S—si1—"5—’i~,_1)_l
' - Om Ty “ g e
+g....)3[2 zo( [
3y==1 iy_1=1 v,-1:0 1)1:”_1::
ip#ly
| A IR N s
The biggest values are obtained when v, = ... v, ==0. Therefore,
the order of this expression is least or equal than
£ n k—(s—8; —ee-3; ’_1)——1
(n—=1% ... § Om * B )
=1 i’ﬂ—1=1
tpig

since it containg the largest exponents. But this last swm is of the follow-
ing order

(n — D 1[O(mr=s=t) LD F O(mA—s )],
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< ' | 1 /I, ) 24 ) Htd
(13) IS5 § O(mttsomsi=1y 1/ 4 O(mtrso=sa—1y — Ok,

1 ‘ ‘ - I, . i
Jr_Jms from (9), (11) and (13), the conclusion readily follows.
Now we can finally approach the proof of theorem 1,
Applying a theorem by G.A. Zirnov: e |6 i
oo HLPINE & thegty by 11.. . 4irnova (see [6]), there oxist g,
; 1 ‘hag for a i = Mgy ¥ = 1, ..., ny we cand find a polynomial with
real coetficients P(L) of _deg‘rees S My, With respect to each variable &
255 1y ..., ny such. that in the z-dimensional cube Dy 00 € o €,4 =
=1, ..., % the following inequalities hold : ) o

n 0% ( ”1“)
. PR 2 (%) & Ny .
) W X) 1= Py X) | < O B 2200 s, ey oo R
where € does not depend on My &= 1, .., 0.

1 Let m be, m = sup (m,), clearly m = O(m,) it m; = O(my), 4, § =
= 4, ..., N £
? ’

We can write this polynomial in the following way [2]

e iy g y .
PX) — );0 R R IR R ey
- N :

and we decompose the coefficients v, 1N the way a, ., —p 4

+ o P beine the I ) 01T o Tt T Py T

vy Pup ) 1e integer that is rnearest to «

£ 1/2. e > S d diearest to ay, ., and [toyn, | S
With this new notation, we can express

(1) N PX) = QX) - B(X)

where 7, ., and &, ., are the cocfficient s '

svely. ity @ uoay, ArC the coefficients of (X)) and B(X), respec-
Let us fivst bound the coefficients of Rﬁf‘l) v (X)

A g i

We can get by induction on o :

( 1 ) i
n Wil —
(].G) llaTL---Tn! < (/1 2 U ny;

I S;—v
i=1 9t

wherp = % or my — vofor every 4= 1, .. o eand all v, satisfying the

conditions : 0 € v, £, v = K i R, L7 P o n °
The proof of this bound runs exactly as in [6] for the case n = 2
P TR e i ) L1y 1) s
Let us dwulp B),...0o(X) into three summands Sy -8, 4- 8., in

the same way as it is exposed in lemma 4. ' y 3

. Then §, contains all those summands whose coefficients admit the
bound (16), while the partial devivatives ape bounded by virtue of (3)
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Therefore
1 1
5 Sq n @y E " J w01 E
) . i k=, 21
(17) Sy <0 X e PN e S T g O Y s
v =0 v,=0i=1 W7 {21 i=1 M

For the summand §,, the coefficients are replaced by 1/2, while forr
the partial derivatives, we apply the bound (10), obtaining :

i=1

(18) . : I8, = H 0('/”1’?77—51*1) iy O(Hlk_s—l).

Finally, for S; we use the bound 1/2 for the coefficients, and the
bounds-(3) and (10) for the partial derivatives; and 'we proceed with,
identical reasoning as in lemma 4, we get

(19) ' 18] < OG*=+=1) |- ... -k O(mr—2—1) =

7N 1
~ 0 ( B il
igl msSi k1 )

Substituting (15) in (14), and bearing in mind (17), (18) and (19),

we get
1 1
. L)+t
3 my m;

o e X) — Qi X)) =0\ X

150 i Sy—
\ s my

since

1 1 » 1 g 1
PRE TR Yy :0()3 _m_ﬁ)

mf L n S om
The theorem is now proved.

COROLLARY. “Ifunder the conditions of the theorem P ( oy (]—) ),
then, the following inequalities hold,
fintn(X) = @ity (X) | < O F 220

where the constant € does not depend on my, © =1, ..., %"
When » = 1 Guelfond’s theorem is obtained.
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