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ON QUADRATIC EQUATTIONS
1OANNIS & ARGYROS

(Las Gruces)

Abstraet. A new iteration is presented [or fin'd!iug solutions of the (uadratic equation in a Ba-
nach space. Our results can apply to quadratic integral equatlions arising in the Lheories of radia;
tive transfer, neutron transport and in the kinetic theory of gases. s

Introduetion. In the theories of ragiative transfer and neutren
transport [3], [4], [5], [11] an important role is played by nonlinear in-
tegral equations of the form , "

(D s oo 2(8) = gls) a‘(s)Sf(s,ft)x(t)dt, Ny
H bR P EETS R | T ] i
where g(s) and f(s, #) are given functions on [0,1].
Equation(2) can be considered as a special case’ of the' equation:
{ I
(2) , @ =y -+ X (x)

where X is a linear operator on a Banach algebra X, and Y e X, is Tixed.
Obviously, equation (2) reduces to (1) it we take Yy = ¢(s) and
1

K(x)(s) = Sf(s, Ha (1).dt.

0

The method of successive substitutions, [1], | 10], the continued
fraction iteration, [9] and the Newton-Kantorovich iteration [6], [8]
have been used to obtain a solution #* of special cases of (1) (or (2)).

In almost all the above cases however the solution a* gatisfies the

estimate -
(3) ¥ || < i?ﬂ?ﬂ?ﬂ’ = d,
2b
‘where
1
b = sup S ]f(é, )| ds
Ogsegl
Q

provided that
(4) 4y b < 1.

~ Under the above assumption however it is known that the corres-
ponding real quadratic equation has two solutions. We wonder if this can
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1 ~ T gurns out that this is true under certain
Pe truc in o Banach space X716 turns ont that this is : rEad)
l;;shlrg})u:)nx What “lfo really need to do (assuming ﬂmt(i) 11“01'(1]5) 1?
‘10 cenerate an iteration {w,} convergent ‘tola sqlubilqnt}a:l ,, E{)?ﬂﬁ? (o
{2)) which guarantees that i [, i > dthen a,} > ¢ and theretore
(" He* || > 8.

We suggest the iteration

{6) Buer = (I a3))(K ()

for solving (1) (or (2)), where

(M o) = o — 9
and

/’ i
® K(=) iy

Apethalpry T
provided that K(#) is well defined and I{x) # 0 on Uz 7) = &€ Xal
fllw — 2 < v} for some ze X, and ¢ > 0. » - gl
" In the first part of this paper we give conditions for Ll‘le>('-,011vteir_é-(;-‘ :10(1
of (6).1;0 a solution of (1) (or (2)) without making use of the standard
hypothesis (4). . i y aatlye
i In the second part we provide conditions for the solution of the abs

tract. quadratic equation

(9) @ =y -+ B(x x)

where B is a bounded bilinear operator on a Banach space X and y € X is
fixed, using the iteration
(10) Tyiq = ~B(mn)_1(a"n —y), n=20,1, 2,...
for some z, ¢ X.
; i g ht oty (5
Moreover we show that (10) has the property (5) if
(L1) 4Bl - il < 1

Finally note that for L(w, v) = witv and X = X, cquation (9) reduces
to (2).

1. Basie Resulls. We denote by €0, 1 ].bh e Banaqh space of all real
conbinuous functions on [0, 1] with the maximum nori,
2 [l = max | a(s)].
(12) llelle A,
i Ve r 19 yQ
Note that the space X = C[0,1] with norm given by (12) is a
Banach algebra. In the rest of this part ||l denot-e§ [l lle- ‘ .
We can now prove @ conseguence of the contraction mapping prin-
ciple theorem [11].

ON QUADBRATIC TQUATIONS

Trawgormay 1. Assume :
(1) there eatst &
operator 1 given by
(13) Ty = (I(a))(K(w)),
avhere L and K ave diven by (7) and (8) vespec
rator K(z) is bounded and « nwmber a > 0 is given by

(14) @ BB ) = e
L— UE] K (=) 7
Jor
0<r < -‘-:-‘-.-.-...!.'....,._._._ v
M- A=) 1
(1) for any x eI the following inequalities are salisfied :
(15) KK+l — g e + 0 - 1< 0;
(16) afl — 2K —1 <o0;
and
- allP(z)
(17 g r< fle — g |
) 1 —ald — 2K} = L
where
(18) P(z) = 2fi(z) 4+ y — 2.

T'hen

(a) Hquation (2) has a wunique solution x* e Uz, ry) which con be

obtained as the limit of the iteration

Tty = (L (@) (K (,))
Jor any @y € U(z, r,). _
(0) Moreover x* €Uz, r,).
Proof. Let » eI and choose w,veT(z, 7).
Claim 1. 1 is a contraction on U(z, 7).
We have,

(19) T(w) — T(;)) = IC(w) (w — y) — K(v) (v — y)

= I(v)K(v — w)K(w) (w — y) + K(») (w — »).

Hence, g
[Z(w) — (o)l < [N+ llz — yl)az + alllw — »].

The above inequality now and (15) justity the claim.

Claim 2. 1 maps U(z, r) into Uz, 7).

€ X and an tnterval 1 = [ Ty Pa)y 7y > 0 such {hat the

tively 4s well defined, the ope-
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The claim casily follows from the inequadity:
| T(w) — 2| < a(|T — 2IC|lr 4 (P < 7,
using (16) and (17). t .
) Remarks .(a) The condition 7 < e — . is imposed hecause other=
wise if say, @, = y €U(#, 7) the sequence given by (6) is not defined. .

(b) Tf the sequence {,} generated by (6) is either inereasing -’ or
decreasing and the rest of the hypotheses in Theorem 1 hold except (15)
then the sequence {»,} iy contained in U(z'r) ahd hy the monotone
convergence theorem, there exists a* >0, 2* e X, such that @, — a*
as m — 0o, Since @y = (L{a,))(Klay)) and x, —= @* it follows that &*
is a solution of equation (2) which may not be unique in U(z, ), since
7 may not be contraction operator on Ulz, 7).

We will now extend our-resnlts;to include equation (9) and itera-
tion (10).

IT. Extension — Remarks. From now on weg assume that X is a
Banach space and that 3 in (9)is a bounded symmetric bilinear operator
[1], [11]. The operator B is assumed to be gsymmetric without loss, of
generality since B can always be replaced by the mean B of I defined

by
e 1 . :
B(a, y) = o (B(zyy) -+ By, ), @,y € X.

“

We have
Blw, ») = B(w, ©) for all ©eX.

Denote by B(x), # € X the linear operator on X defined by

B(®) (y) = B(w, ), Y eX.

We are now going to show that iteration {,} given by (10) in case
of convergence to a solution «* of (10) is such that [la*] > d under cer-
tain assumptions.

PROPOSITION 2. Assume :

(1) The iteration

Py = B(ay) ™M@ — ¥)
is well defined for all n = 0,1,2, ... for some xy€ X and converges to «
solution = of (10).
(2) The following s true:
1 — 4Bl Iyl >0,
and
(3) let p € [PyyPaly where Py Py are the solutions of the equation
| Blp® —p -+ liyll = 0.
I,
@l = P

ON QUADRATIC. EQUATIONS

then

[‘2, > 4 .
Wyyizp, n=20,1,2,,.,
and R

| Izl = p.
(Note that d given by (3) for .b = [[&] is such that d € [p,, p.])
Proof. Using (9) we have S

or, -];(‘T'"-’ 'an+[) =Ty — Y
la, — oyl = Blx,, & t (-0
80, [l as 1l Il B, a‘JH—l) < OB ”*T’uﬂ”y
’ Ha, — oyl [, || — 1l
A ’_’J' yil > JI__QL“;L“L”, .

WLl ll B )

o Esma}e that [zl > pfovallk =0,1,2, ... 2 Since @ =
Z i to show [la, |l 2 p, it isenough to show ? el al>p >

i@ =
B @)
op!
”(13”” > ﬁ“__
| T
Finally it suffices to show R :
14
pa bl
1~ il 2]

or
I Blip* — 2 -1yl < 0 which is true for p e [p,, Pl

That completes the proof of the proposition.
Using the Banach lemma for the in\-"er.bil)ilitg\v' of line

1 e asilv « ) %, ar operatovs. -
[11] we can casily show the following result. AT operabors.

Bl ST 1 o~ ‘r X o
T(,,;.iib;(; li(,?[g)/?()()'jji?(};) ,LL(JI‘I < G.,z he ISZLC/L that the lin ear ()])(37'0[07" ,[))( z) 8 N
3 2. Lhen B(x) 18 also invertible for X 2 h U
vertible for all @ e Uz, R,), where

. 1

p = e

B BE

" We will need the definition :

© DERINITION, L ! ! '
SPINILION. Let 2 € X be such that the linear operabor B(2) is in-

vertible. Let I > 0 be fixed and R < &,.

The operators f’, i given by

P(a) = Bla, ) 4y —
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" Pla) = (B (@)@ — )

lefined or z, It).
e then well defined on U( ,1
i ﬂi;eﬁn.e the real functions Iy

FR) = e, 0* + e + ¢

and F, on R* by

e Fy(R) = ¢lt* + ]+ o
rue e, (I B 1B (2)7*?,
0y == — 2| Bl | B&)™ s
e, =1 — || B&) 2 — I BIL - 1BE* I — 9l
6y = Il BIl - 11 BE)™
0, = || B(x) (I — B — 1
and

¢ = || B2) T B (@)} |
in Theorem 1 we can easily show the following conse-

Working as { oo 8
quence of thge contraction mapping prineiple [(11]

oM 3. Assume: = L
E(Dlﬂ)EgeI:E:{ oaists z € X such that the linew operator B(

(2) The following are irue:
e3 > 0,
es << 0,
@ — 46,05 > 0

ond (3) there ewists B > 0 such that
F(R) >0,
I(R) <0
d
" R<|z—yl

Then B
(@) the operator T given by

. T — B(a)™ (e — )

. o X —-'T

is well defined and it has @ unrque fiwed point el
(b) The iterairon

Gy = B(a) {0 — 4y W= 0,1,2,...

(z, R).

2) is tnvertible.

7 ON QUADRATIC EQUATIONS

o
el

s well defined and it converges to @ for any xyc U(z, R).
Moreover, if
L—Aalf Bl -ty >0
and
1
ol > e
2| B
then

] 1
o > ot
9l By

lremarks 2. (a) 1t the hypotheses of Theorera 2 are true then equa-
tion (9) has two solutions », and x, such that
lall< d
and
s ff > d.

(b) Tt X = X,, then the hypotheses of Theorem 1 can easily be
verified. If X is a Banach space then the conditions of Theorem 2 may
be difficult to verify since the invertibility of the linear operator .B(z)
may be almost impossible. Moreover z has to be chosen cloge to the
solution.

However the other two popular methods for solving (9), namely
Newton’s method

(20) Taeg = 3 — (2B(x,) — D (P(w,)), n=0,1,2, ...
and the method of succesive substitutions

(21) Ty =Y -F B2y, ), n=0,1,2 ...

share similar difficulties.

In particular Newton’s method also requires # to be “close’ to the
solution and the invertibility of the aperator I — 2B(x,) at each step (or
the invertibilily of (I — 2B(ax,)) il we are referring to the modified
Newton’s method). . i

Moreover the method of successive substitution makes no use of the
invertibility ot the linear operator 5(2), but 2 must still be close to the

solution and

12l < 4,

under hypothesis (11) [1], [2], [10]. Therefore it cannot be used to find a
solution @ such that
flell > d,

since the solution obtained then satisfies

lelt < d.



26

L K. ARGYROS ' ° 8

Ifinally note that in a general Banach gpace X neither (20) nor (21)

share the property of keeping the {terates away from zero as does itera-
tion (10). Therefore iteration (10) it applicable can he used to find {he
“large” solutions of (9) (it they exist) under hypothesis (11).

(2]

oo =1

9.
10:3

i1.
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