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Abstraet. The melhod ol nondiscrele malhematical induction is used to find crror hounds
for the Secant method. We assume only' thal the operator has Flélder conlinuous dervivatives.
In case the 1I'réchet-derivalive of the operator satisfies a Lipschitz condition our resulls  reduce
to the ones oblained by I, Polra (Num. Malh. 1982).

Introduction. Consider ' the cquation
(1) fle) =0
where fis a nonlinear operator mapping a subset £, °6f a Banach space
I, into another Banach space #,. .
Here we are concerned with finding solutions of (1) using the secanb
iterations

(2) a.n+1 = ‘ll‘n - 8,f(-’£11—1, a")l)ilf('ll’.n}
(3) Lt T = Xy Sf(ALy, @) " fla)

where @_, and x, are two points in the domain of 1, and §f it a Consiv-
tent approximation of f'.

This work is based upon the elegant work of . Potra |ncluded m
[4] concerning the error analysis of the Secant method. One of Potra’s
basic asswmptions is the fact that egsentially. the linear operator f* is
Lipschitz » continuous. However in' the presence of ' some [intcéresting
examples (see part (I1I)), where f’is only Holder continuous we extend
most ot the results contained in [4] for the iteration (3). We leave thg
extension of the results for (2) to the motivated reader.

We furnish two examples in part (HI) to'show that our 10.\uit.x can
be applicd whereas the equivalent results in [4] cannot. DGR

Since our resulis are drawn almost in the sane lines with 'the ones
in [4], we will need to restate some here.

L. Preliminaries. Consider a class O of palvs (f, v,) where fis as above
and vy = (@, Ly ) dst a systemylof -k points' from Id,. We want to
attach Lo each pair (f,v,) e Ca sequence {x,}, » = 0,1, 2, ... of: points
of iy converging to aroot a* of (1), To achieve thig we associate aith
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the pair (f, v)) an operator F : E ¢ B} - By, where kb > p and try to ob-
tain a sequence {w,}, » =0, 1, 2, ... by the scheme :

. n Em 9
(4) P41 — 'F(‘/Bn—-“n+1? e ‘I"")’ "= 0’ 1’ oo

b f N " T

The above scheme will yield a sequence {xy}, n =0, 1, 2, .+ it
My = (L_paqy -+ -y Lg) 18 AN admissible system of starting points in the
sense given by the following definition :

) i( 3 g » A A" v 1 Y
Prpiniriox 1. Consider an operator F: K < By — I and define
recursively

_ N ‘ ~ ; I0 R = i .
By = E, B,y = = (Yo, -~ s o)€M Y+ oo Yo I(0)) ebut, 01,2

Any ity € By = M E will be called an admissible system of starting points
] 130
for the scheme (4). 4 . ‘
1§ u, is an admissible system ol starting points for the scheme (4)
we shall gay that (4) is well defined.

Drrmion 2. Let € be a class of pairs (f, t,) \vh‘ure J isa nonlinear
operator defined on a subset By of a Banaeh space I¢, with values Cn a
‘ . ] . 'H = 1 o o W T 7
Banach space Ky, and vy = (L_gsyy ++ vy ) € }f:. Let p < i..: By amll_ i t\_}:;
tive procedure of type (p;1) for the elass €, we mean ﬂl app :|lca,ra. -l
which associates with any (f, v,) € € an operator F: E < E? < [, having
the following two properties : . RUI

(i) g = (F_parpy -+ s To) I8 AN admigsible system of starting points:
for the scheme (4);
(ii) the sequence {m.}, # =0, 1, 2, ...
i) the sequence {(®r, # , 1, 2,
a ro0t x* of (1). _ . -
Having an iterative procedure of type (p;l) for jﬁhe (rslaussr() it is
important to find a function «: Z, >R+ a_ud_ o funetion £:R% —[R..
such that the following inequalities arve satisfied

given by (4) converges to-

{(5) d( 2, 0%) < aln)
(6) x, — %) > M Zn_p11y Fuop)s + oy A ¥py Xucy))

cor every pair (f, 79) € € and every positive integer . |
N LVT;J}]{& ?1?311531,1113;)33 {3) are eallg(l]'n.prim*i estimates because t.he' '1'1;._{]_1.1,
hand side can be computed before obtaining the points ay, sty P vm
(4), while the inequalities (3) are salled mpnﬁtm_'lm'_l .eﬁtfnfn.a].t.e.s. ,!)ge:.a;utb}.
their right hand side can be coruputed ouly after obi-z_umng t wsr. poin ;?.‘
The estimates (5) and/or (6) will be (l‘.:l-ll(“ll zs_h:}.rp if there umazl.q;, pai
(f, 1) € C tor which these estimates arve qtl'.aa]led for al} ""'_.: 11,_ (i ,t ik
In the study of (4) we usge the nondiserete 1rm-tlu-.1na@-:¢a induction.
The method was initiated by V. Ptak by refining the closed g]'a'l?h',.ﬂﬁef“:
rem [3], [8]. V. Ptak used this method to 'hlve.n'_\tlg&m 1l.g1-zut1x'e ?lg__f,out 195
of type (4) with p = 1. In (3] the method Wwas extandeq or any p
"Here we restate the results obtained in the above mgnh oned p?fmpu.
Lét T denote either the set of all positive numbers, or an mterya} of tth:
form (0,b] = {xeR; 0 < < b}. Let © be a Mapping of the carte-
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?um pr;)duct 7" into 7 and let us consider the “iterates”
0_1 Cach = (¢, ..., 1) € T” by the tollowing scheme :
(7} 0Ot = toy 0D (1) == 0(1,, |
Dumiximon 3. A m
law, ix ¢

w®of o given

o lay (1), no=0, 1, 2,
apping «: 17 — 1, with the above jterati
SETION, ) 5 s @ ) LG Q1L
alled a rate of convergence of type (p; 1) on 7, if the series
(2]

(8) o(t) = ¥} o™ (1)

=0
is eonvergent for all te 77,

From now on # will be
complete metric space, a
We attach to #  the
=Wy -, ¥s) € B by

;‘h mapping of E into ¥,, where H, is a
v.ndr B a ;:*ubset of the cartesian product K2
mapping F: K — E?, defined tor overy u =

. =
:(f)) B (1) = (Yor - oy 510 H(w)).
Denoting u, = ( Bo_pi1y -5 &) We have

(10) Uiy = Flua), n =0, 1, 2,

Similarly we attach to « the mapping o : 7% — pr
(11)

defined by

() = (1y .. o by o(l)), 1= (ty <oy b)) € T2,

Denote by &® the iterate ©i ¢ i

functions:f i isc iterates of © in the sense of the usnal compasition of
WO(t) = 8, 6" (1) = w(@®(1)),

Then (7) beeomes

(12) @O1) == b, @D (1) = (@@ (1)),

Finally, we introduce the notation

} B(t) = oft) — 1,
Frowm (8)"and (11) it follows that

B(1) = ofo(1)). ‘
With the ahove notation we ean state tl i : iti
Ao Bl e, e the following proposition whaose

ProrositioNn 1. Let E, be o - velr (

R - b Mg he a complele metric space and let B
subset of E{;.‘Lﬁt us consider the operators F: B — B, a,p;zd Z:re i egi };EF“)&
where exp(E) denotes the class of all subsets of K. Let  be a rate och‘ e
vergence of type (p; 1) on 1. ‘ e

It there exists w, = ( T_p+1y -+ -y %y) € B and 4, € T? sueh thai

(13) g € 4(1,)
and if the relations
(14)

F(w) € Z(w(t)),
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(13) AL (u)yy») < lo

I T =) ; e ZM)y,
satistied Tor all t= (') ty) € T? and 'u = (gye =3 p)
are salisficd Tor a {
then : ‘ : g
(i) the iteration (4) 18 WQH ddlm,’d. A 2
“(il) There exists an o € I, such that x™ ==

n—oo

. I bl = () J PRI
111 e V o 314 l P 1 "'l 1 [ )1 &11 n y L 2,

(16) w, € Z(©M (1)),
{-
{(17) d( 2ty 1y Xn) > o™ (1),
L ]
] PR e |
(8) il Wit, 2g) € olty) = (@™ (),
.\7 i I
' Horn, %) < o(@ (h))-
{19) (l(-lm e ) (‘( ( 0) : e it GZ((L!),
(iv) Let # be o positive integer and let d, e T"5 1 -
iv) L y PO .
then
(20) Uy %) < Bd).

' iterati 1 only indicate
Sinee we arve only going to consider iter at&?‘]ﬁt (1{)’3 )juid ”We} e et
1 foll (2 wo agsuine fr w on that p = 1. (
hat wi - for we assume from no _
what will follow for (2)
the definition: | o o
a0 Ay R 1{11‘_1:, L

DipxrronN 4. Tet By and Hg be 4wo liaﬂwt_rll 'b%d‘::bi‘\’]&l]i:t‘»]l T E";:éuhut;
subset E%IIF” Let f: B, — B, be a nonlinear 01_)(,-1“21‘0.{_“0 ) 35 Holder
htms D .1'111; 01{ 7. We say that the .i\?l't‘&twi“le’g—_t:-l@lg\ﬂ?[' 1:1{(1 o v e By
(hfff}‘enbhw l“;'\'u' '14‘4. it for wonme ¢ =0 and q'e [0,: ], anc
continuous over fiy 11 . 3 s .

; | N T 1A
L () — foplisene — Y

(21) b — Ianii<el |
- : A o @t ST (65 s £
IR W T L0 ) : el anaich $paces and lett #, e

Duprsirion 5. Lt 1, and B, bertwo Banag’ °L operator whieh is

i mtl el of By, Let [ B, — B, be & 1‘10_11111111{1%‘ _1) i}(!f} B, (the
t DNYVexX 8 Bl R & o ) BNy = ER 0 20 SR | . y 8 x
Fréehol-difterentiable on Fy A tiabping?8/: M 5 B4 20 6 S
) rl I i r e L ) var Paern G T N . ) il

«l linear operators from, By 10, Ze

space of hounde d

7 it o oxicts o constant d > 0 such
ent generalized approximation of f*, it there exisls a cONs
+ - el 3 . : -
that L ) -
22) Sy — F@)) < de = 2l =+ lly = =lf)ia e [0y 1,
sl A J RO Tt ! 18
and for all o, y, @€y g gl
» The ahove condition implics the Holder conbinuity of / A BEICRyks
x| NN L ’ . ¥ J,'/_' ,l‘
Gy = W = S (o)) o (8o 9 = T (J/))j.. :
) S Y ‘ ! i
< d(fl— wit st ly —= 2l d @ =y it Hlige— i
14 Pt (b vy RIS } ! '(
<2d]lx — ¥l
That is o X
(23) /(e — Fonl < el _apllts o= 2d and for all o, ¥ € by
23 f (e — 10 sl e pdl

R, =

o
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Also, as in [2] we can easily show that

(24)

i L el L

(@) = flg) ~ (o) — ) < = o —ypo
_ : 14 q

for all =, y € ..

Finally, for all », y, w, v € ¥, we have

If(u) — flv)— 8f (2, y) (v — v) |} =

|
=
i

[(flw) — flo) — f(o)(w — 2) + (J(0) — 3f(a, y))w — o)

S = flu — oML d(fle — o)t + iy, — oy e — 2]
I+q

(25)

A

LAl 2 .
@[55 i ol 4 Ty = ol Yo = el

Let O(hg, gy, 7,) be the class of all triplets ( fy 2y 2225) mti.sfyihg the
following properties :

(Py) f'is a'nonlinear. operator having the domain of  definition B,
included into a Banach space B, and taking values in a Banach space
-

L APs) @p and @y are two points of ¥, such that

|20 — @_1 | < oy Il 29 — f’"—l”<l_ u.

(P3) [ is Fréchet-differentiable in the open ball &7 = Uy, ) =
={ze B /|l — xl <u} and, continuous on its closwe U,
iy L1

). there exists a consistent generalized approximation 8f of f' suclh
that: Dy : = §f(w_jx) is invertible and “ k- avLed

(26) 1057 (305, 1) — FENN < holll = 2110+ g, — o4y

for all @, y, e U and some hy > d- || Dyl
(P5) the following inequality is satisfied : ,
' DG (@)l < 75 i

(Pg) Assume that for » e (
following estimate holds :

(28) 1, [ e (i

0, 7], 4o > 0 and for fixed ¢ € [0, 1], the

, o) - o)+ g0t - (alrg) — G(,.))q],. < o(r)
¢+ 1 ) me iy
where '
(29) o(r) = @y — a, e
g )
. B P 1+¢q
(30) w(r) = h, {[ e - 7‘] — (e”"} ’
Mo e : g ity < |, '
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I4g

P 1+4a
2 Dal1) = dy = . -—{— o y
(31) o(77) == o I
and ¢ is the minimum posi ive solution of (if it exists)

va . o
(32) (@ (1) Qo — (@ o))+ = hz ’

We will use the estimate |
D5 (f(w) — ftw) — 3f(ayy) (w — el == 1D (flw) — flw) — [(v) (e )
LDyt () — 3 (@ p)u— o)
24 D5
< PRSI LS. A
1-4q
(by (24) and (26))

(o4 + ([ — oWty — o) e = ol

o[ ¢ floe — ol iy — ol e — ol
3 < hg | — e — vl ke — vl A Y
bk b"[l 4 q

A\
] 1o n B » 3 [
IL Main results. Using (3) we shall show that it .(f, x(,,_‘ es;;t%n
e Ok q 5‘) then (1) has a solution #% lwhich is unigue in & ceria
0y Yor 70 - N
neighborhood of #,. s gl sl Wy e
We will need the following lemma whose pr oof ag similar to L
1in [4] is omitted. A v
: ; : d that the equation
Lmawa 1. If hy > 0, €0 > 0, o %»0 M? fmd(l'liotw(o qiven %471 (30
(32) has o mintmum positive solution a. Then 1 e ‘/16121,.71 At ",] o
is @ rate of convergence of typs (1,1) o‘v)z the interval 1 = (0, 7]
corresponding o-function s fgreen by (29).
We will now prove the main restlt.
T ] . 1] 4 1he
Tyronmst 1. If (f, @ ®-4) € C(hyy Goy 10),. lhcnn it ol
the sequence {ay}, no= 0, 1, 2, ... is well define ol
U ((jh () , ), where ;L — o(ry) remains in U and converjes to o solulion
T Loy tho)y ¢ o TT n
Coa® oof (1) such that :

{34) Bty — ¥ < a(w®(ry)), # =0, 1,2, ...
‘ | ] 1 it == 2 PO
(33) fay — @*i< o(lltn — #a_g) — Nt — Taglly == 0, 1, 2,
where o,  are giver by (30) and (29) respectively.

Proof. Define the mappings .U -8 and Z: 1 =
= (0, 74] — exp(Fy) by
36) F(e) = « — D5t f(@)

-~

7

37 Z(ry = {w e B/ [ — ayll< olre) — ()l DT )l < 7y
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By, o(ry) = 11y, it follows that Z(»)' < U. It r € (0, 7,], « € Z(») and
w = I'(x), then we have
(38) o — @l < llew — @l - | — aoll <7 + o(rg) —
— a(r) — o(w(r,)) — a(a(r)).
Since w = F(x) implies f(@) + Dy(w — @) = 0, using (33) we have

1D flw) | = DG (fw) — fia) — Dylew — )

) 2 m 1 ! '
< Iy [-———*I‘w — @l = @l = 0 — ol ] g — a*ll“] w — a
14q |

< ho[ . i T alr) o) @ o (el c(r))ff] ,
(39) < () (by (28)).

By (36), (37), (38) and (39) it follows that the hypotheses (13), (14)
and (15) of proposition 1 are satisfied. The estimates (34) follow then from
(19), while, corresponding to (16) and (17), we have

(40)  ay_y € Z(" D)), 1@ — @usy ]l < 0@ D), n=1, 2, 3, ..

Using (40) and the fact that, eincreases on (0, 7,] we have ,_, €
€ Z(|ley — w,_1 1), so that according to (iv) of proposition 1 it follows
that (35) hold for n =1, 2, ...

Let now n —ooin (3) to get f(a*) = 0. This completes part (a) of the
theorem.

Part (b) and (e) follow identically as proposition 2 in [4].

That completes the proof of the theorem.

We can tall about the uniqueness of the solution 2% in a certain
neighborhood of a; but the motivated reader can easily produce the ana-
log of theorem 2 in [4] that describes the uniquenecss of a*.

At this point we prefer not to pursue the goal of investigating ite-
ration (2) with our new hypotheses but instead refer to a couple of in-
teresting examples where our results can be applied and the correspou-
ding ones in [4] cannot. ’

I Applications. Kxample 1. Counsider the function ¢ defined on
[0, b] by

G =2 7 41— 3
() =517 4 :

for some b > 0.
Let || || denote the max norm on R, lhen

1
2

1
—
2

[1G”(t)]] = max

= 00,
te(0,0]

which jmplies that the basic hypothesis in [2] (the Lipshitz continuity of
J'for ¢ # 1in [4]) for the application of Newton’s method is not satisfied

3 ~ c, 1172
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for finding a solution of the equation
(41) G(t) — 0.

However, it can easily be seen that G'(t) is Holder continuous on [0, b}
with

=" i ~1
;= 1 anc =
¢ q 9

Therefore under the agsumptions of theovemn 1, iteration (3) will
converge to a solution t* of (41).

A more interesting nontrivial application for theorem 1 is given by

the following example. . . '
Baxample 2. Consider the differential equation
{42) 2 att =0, qe[0,1]
x(0) = (1) = 0.
; ; 1
We divide the interval [0, 1]into » subintervals and we set h = —-~
%
Let {v,} be the points of subdivision with
0 =0, << <... <=1

A standard approximation for the second derivative is given by

Take 2, = r, — 0 and define the operator ¥R o R* LDy
(43) Fa) = H(2) + W29 (a)

2 —1. T
1 20 0

= . H ] )

and
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Phen
af 0
Jﬁ
F(e) = + 1 (q + 1) : .
0 'an-—l

Newton’s method cannot be applied to the equation
(d4) () = 0.

We may not be able to evaluate the second Iréchet-derivative since
it would involve the evaluation of quantities of the form a7? and they
may not exist.

W e will face the same difficulty in verifying the Thipschitz continu-
ity of F'. i

Let 2 e R*Y, HeR*1x R* and define (he norms of & and A

by
lel = max |ao;|
(<j<n—1
n—1 .
iH )= max Y [hul.
1<jgn--1 rel
For all #, #z e R*~! for which |wg|> 0, |2, > 0,71 =1,2, ..., n — 1
] " e s 1
we obtain, for ¢ = —- say,
2

e

Il (2) — (=) || =

el 3 -

1 1
3, w7 3 N s
=-—DL* max [a; —z | <--- h*[max|r;, — z;{]2
2 l<isn—1 2 .
. -
= Rhle — 2|2
2

Therefore, under the assummptions of theorem 1, iteration (3) will
converge to the solution a* of (44).

Remarks. (a) Note that for ¢ = 1 our results reduce to the ones in
[4] and condition (28) is then imunediately satisfied for the particular
choice of o and ¢ given by (30) and (29) respectively.

(b) Using Rolle’s theorem one can give sufficient conditions in terms
of ry, qo, ¢ and h, that guarantee the existence of a minimun positive

solution « of (32).
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