MATHEMATICA — REVUE D’ANALYSE NUMERIQUE
ET DE THEORIE DI L’APPRONIMATION

L?ANALYSE NUMERIQUE ET LA THEORIE DE L’APPROXIMATION
Tome 18, N° 1, 1989, pp. 51 -59

LOCAL REPRESENTATION OT DISTANCE FUNCTIONAT
ON SMOOTH NORMED LINEAR SPACES

SEVER SILVESTRU DRAGOMIR
(Biile Herculane)

Abgtraet. The main purposes of this paper are to give some local representation {heorems for
the distance functional e defined on smoolh normed linear spaces in terms of semi-~inner pro-

duct in the sense of Lumor [5] and Tapia [9} and to give sonie characlerizations of rellexivity
for smooth Banach spaces. 1 I

0. Introduetion. 1. Lot (A, 11D be a veal or complex normed linear
space and ¢ a linecar subspace in X. We can define the following real func-
tional :

(0.1) ee(2) 1 = inf ||o — gl = d(», @), we X
gEG

which will be called the distance functional associated to linear subspace G,
The following properties of the distance functiona] €z were esta-
blished by Miron Nicolescn [6] in 1938 (sce also [8] pp. 137).
0.1. TurorEM. (M. Nicoleseu). Let (X, [+ 1) be & normed linear spaca
and G its linear subspace. Then the Jollowing sentences are valid -

(i) Hor all ¢ X :

(0.2) 0<eg(w) = e (#)<< oo;

(i) If Gy is a Unear subspace in G, then

(0.3) ee(r) < oo (x), we X

(iii) We have

(0.4) ee(d) =0 if dec@;

(0.5) ea(x 1 g) == ea(®) + eg(g) = (), weX and ged;
(0.6) | ee(® - Y) < eq(w) - ec(y), w,yelX:

(0.7) toar) == faleg(x), o e I, 2eX;

(iv) The Jollowing inequalities hold
(0.8) lea(®) ~ ex(y)] < || — ylh @yed;
(0.9) (@) < flofl, we X
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(v) The mapping Ccq is continuous on X endowed with strong t_op{)log;f/. .
As a conhsequence of these properties we have the following covollary
([8], pp- 139): ' _ ‘
0.2. CorROLLARY. Let (X, || -|) be @ normed linear space G o linear
subspace in X and y, & 1wo elements in X. Then the veal Junction green by :

(0.10) () : = eely - 1), 1eR
is conver in R. If z¢G, then
{0.11) ' lim o(t) = co.

t—1-co

Another property of the distance functional eq referring to weak
topology o(X, A¥) of X js embodied in the next theorem :

0.3. Taroru. ([8], Theorem 6.6, pp. 139). Let (X, 1) be o 'n:owned
linear space and @ dls linear subspace. Then e is lower SeMA-CONTINUOUS
in weak topology o X, X¥) of X. ’

TFor the proof of this result we send to [3] pp: 1400 cvehita vilb) a1

Finally, we recall the tollowing lemma which improve the defini-
tion of the distance functional. -

0.4, T, Let (X, 0| be a normed linear space, G« linear sub-
space tn X. Then:

(0.12) ec(r) = inl o — qll, aed.
gEG
el

2. Now. we shall present some concepts and results in hest approxi-
mation theory which will-be vsed in the sequel.

Let (X, 1) be a normed linear space, G a proper linear subspace
in ¥ such that G#X and x¢€ NG

0.5. Dupixrrion. The subspace G is called proximinal in X if for
every a e X the set of a1l clements of best approximation in G to a:

Po(x) 1 = {go e Gllle — Mol = Helf;ﬁ w—gli=@

iy nonvoid. . ‘

It Pe(x) contains a nnigue element, then ¢ will be called chebyshe-
vian in A B o (i

The following lenuna of ¢haracterization {81 pp- 87 ig important in
what follows.

0.6. Luaea. Let (X, -1 he « nornied linear space mm{ll _H @ hyper-
plane i X containing the null element 0. Then His _-p'm:r:?fm.*t.-{'r..m’. iff Uf-w‘!cf eaists
o veetor z € ANS0Y such that 2L I in the sense of Birkhoff (see Delinition
0.8). i [ U ' ISR
Tor other characterizations of proximinality we send to [8] pp-
86-—95 and to the recent paper of the author [3 irhin '

3. Now, we shall give the notion of semi-inner product in the gense ot
Tiuner and the conmection of this concept with simooth normed linear

spaces.

—
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0.7. Derxtrion. ([5]. [1] pp. 386). Let X be « real or complex linear

space. A mapping () : X X X - I s called semi-inner product in the
—inner product, if the following conditions

sense of Taymer ov, for short, L-sem1
are satisfied :

() (2 + 9,20 = (B &)+ (1, 2y g eedy
(ii) (awy ), = (@, )y, @€ iy 2y e X
(iii) (2, @)y 0 if @ # 0

(iv) Gy 2 < (o, @) () Yoy @54 € X5

(v) (@, 2y)y, = M, y), rek, x yeld.

N
We note that the mapping Xs @ i (o, wp,)2€ Ry 18 2 norm on
X and the functional given by X3 x L (@, y)r € I is & continuous linear
functional on the normed linear space (X, [|-]) and Ify = lyil.
It is well known that a normed linear space iz smooth iff there
oxists 2 unique L-semi-inner product which generates the norm or the
L-semi-inner product which generates the nornu is continuous i.c.,

(0.13) lim Re (4, @ 4+ 1), = Rely, @), @,y € X ([1], pp- 387).

-0

0.8. DEmNrron. Let (X, | +]) be a normed linear space. The clement
@ e X ix called orthogonal in the seuse of Birkhoff over y € A0 if

(0.14)

x4y = el for all we K.
We note that xLly.

Tn paper [71(see also {17 pp. 401) Loan Rogea introduced the coneept

of orthogonality in the sense of Tumer.

0.9. DEFINITION. Let () bea L-semi-inner product on A” and x, y
two clements in X. The element o e X is said to be JZ-orthogonal over
yeX if
{0.15) (v, @), = 0.

We note that aLy (see [2], Definition 1.3).

The following lemma proved in [4] gives a characterization of
T-orthogonality in terms of Bivkhotf’s orthogonality for smooth normed
linear spaces.

0.10. LA, ([4], Lemma 1.1). Let (X, -] be a smooth uormed
linear space and (,); the L-semi-inner product which generates the norm
[-. Then the following assertions arc equivalent :

(i) x Loy,
(ii) x Loy

Now, we shall give the concept of semi-inner product in the sense of
Tapia associated to a real normed linear space.
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0.11. DiwrrNrrion. ([97, [ pp- 389). Let (A4 -] be a real normed
linear space and let f: Y = R, f(z) =12 =y @ € X. Then the mapping

] 4y — (G
f(y - ) _f(ﬂ)_ , myyeX

(2, 4)p s == L ==
] 140 t

is called semi-inner product in the sense of Papia or, for short, T-semi-
inner product.

In paper [2] we proved the following result.

0.12. Luana. (2], Lemma 1.2). Let (X, || -] be a smooth normed
tinear space and let (,)r he the L-semi-inner product which generates the
norm || |l. Then we have:

i . Re(wx, v+ iy — e (12
(0.16) (y, @)y = Re(y, ¥)r, = UM : t. -

-0

for every @, Y € X. 3]
Tor others properties of 7, semi-inner product and J-semi-inner

product we send to [57, 171, [1] pp- 386402, ov to the recent papers of
the author [2], 31 and [4].

1. Loeal representation of distance funetional. Further on, we shall
suppose that (X, | -1) is a smooth normed linear space over the real or
complex number field and (,)z will be the unique L-semi-inner product
which generates the norm I

1.1. TaworeM. Let H be @ hyperplane containing the null element 0.
Then the following sentences re equivalent :

(i) H s proxwiminal in X,

(ii) There exists an clement we X, |lul =1 such that

(1.1) ex(®) = (@ w)l, ¥ € X.
Proof. “(it)=-(i)". Tirstly, we observe that eg(w) = 0 for all we
implies wLH. Since wLH js equivalent with wl H (see Lemma 0.10) by

Lemms 0.6 we deduce that H ig proximinal in X. )
“(i)=(ii)". I H is proximinal in X, then it is cloged in X .( [81,
pp. 88) which implies that there exists a continuous linear functional

f#0 defined in X such that H = Ker(f).
On the other hand, by Lemma 0.6, there exists an element w € X\{O}

with the property: w.l H i.c., wLH.
It is easy to see that

f(@wyw — flw)x € Ker(f) =H, x¢€ X,
and then
(f(w)w — flw)z, why, = 0, € H,

which gives by simple computation :

flz) = (ﬂ? -@w)z‘ xvelX.

" |2

o]
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Pufiting v : = A )—w, we obtain :
flw 12 ’
i i
Ha) = (@, 0)s, weX and | ff = v].
By Ascoli’s theorem ([8] pp. 21), we have
d(x, H) = ,L(lﬂ, xe X,
17l
:and then
[ (@ o)L -
en(®) =1 — (@, )], weX
ol
rNere L i
where a ; == 1|vH~’ and the theorem is proven.
1.2. COROLLARY d )
COROLLARY. Let (X, [[-]]) be a smooth wnormed linear space over

LeLE (NG 17 hq (4] (¥ k CORLBRNVNL 1}“” n ()]6’”(‘7”
3 re ll lu/nli (&} 1 1 1 11 / / Y)Z(LN«( ¥ 0% 4 Y 7
0. [}le?L ﬂl@ ")ZZOZU,/)“’ 00’"(!'“:7/()"6 ar( (3q ULVALENT /1[ I

(i), H 1s prowtminal tn X ;

(i) There ewists an element we X, [u| = 1, such that
1.2
( ) en(@) =[(x, w)pt, @A |

1.3, COROLLA (X ,
the complex nu'))sz];Yﬁg%L (,A’ [ 1) be a smooth normed linear space over
clement 0. Then the foll and H o hyperplane in X contwinisg the e
_ 8- en the following assertions are equivalent : ' g the il
(i)- H 4s proximinal in X ; - e

(ii) There exists an element v e X, ||v| = 1, such that
1.3 l |
(1.3) enl®) = [(x, 0 + (iw, 0372, & X,

r["l T f l ]I 7 l,r 1[ A i 1 20a b l l ' I 5 01:3
1 I'oo : oW U‘ 1¢ previous -t i i
Of 201!1101;1011. N” & ()”111) t[l(z (:I(:l)rl)(l l;\'. o iy ) i 3
‘O\V, we call give ‘1 kl 1004 1 . ¥
E. o < 16 l eoren ()tl) i 11 PIes ; ] '
| g d flI] »d 1 ai a)]] .“, Q1 ]' 109 ST l) ]) LCE ( e . ] lﬁta\l (I
I mear s [)()'(',(/ (4&'7 ” ” ) : Lspace & 1h 9§ l]lOOt 1 norme (1

4’ GORLEM. 4, ) 7 P( ? l '“ 1ee ,i h(’ e )2 =
1. . J—“J RIEM. { (’L ( [)f [/ 7) O
" 2 5 3 2 C tnear su y ¢ [

oy CYRN N TS
(1) & is proximinal in X ;

(ii) For every x, e I\G 1 " i ' :
Ty € - 7 there exists. a nent iy, €
N exnsts. an element 1y, € G®[x,],
i [[te, || = 1, such that
4.) ea(w) = | (@, Ue)r| © €CG @ [m,].

Proof. Let 2y ¢ X\ @G and F, .
; O o (SE and F; : = G 1 -
in F,, containing the null element ] G @ [#]. Then ¢ is a hyperplane
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, o . i T (for

“i) = (i), I G s proximinal in X, then G is 1)1@\11111]}2»1 in Iy, (fo

' @) and by i jcation (i) = (i) of the previous theorem,

every x,c A \G) and by implication .( o ‘(1) 14
there exists an element wye Fyy [l | =1, such tha a 1.4

valid. '
t i i ne i jcati rem 1.1 for
“(ii) = (i), It is evident by same implication of Theore

the normed linear space sy, and by definition of proximinality.

The theorem is proven.

1.5. CoroLtARY. Let (X, || -1) be smooth nowgwdrlmear s%mqe l;wi.?
the real number field and G a proper linear subspace in X. Then the follo
ing sentences are equivalent :

(i) @ is proximinal in X ; e
(i) For every xy € AN there exists an element wn€G @ [x], lusli =1,
such thai :

(1.5) ee(@) = (@, We)rly X € G @ [2,]

1.6. CorormARY. Let (X, |- |) be @ smooth normed li!iw%f S]%?gﬂoé)gg
the comple number field and G a proper linear subspace 1 A. . )
followtng assertions are equivalenl :

(i) @G is prowiminal wmn X ;

(ii) Hor every x, € X\ G there exisls an element v, € G ® [2oly 1|V =1,
such thet :
(1.6) eol) = [(, v + (5, VI, @G @ [%].

Turther, we shall give some consequences which are important in
applications. s T
JONS gNops. 1. Let (X, ||+ |) be a smooth normead Lued
H])a,eelf«;fl'd((oms)ﬂqul:e the L-semi-inner product which generates the norm
. ' : ! F 3 'l 1 .
|- |l Then the following assertions are valid : g
(i)  If @ is a linear subspace in X such that the unit sphere i
b.' :={ge@| |g|l <1}is wealkly sequentially compact, then_ (ir
cgc:rv :bu e X\ @G there exists an element ., € G @[], llusl=1,
such that (L.4) holds: i - :
(ii) IfGisa tinite-dimensional subspace in X, then f_or_leiuly fr%, 161 c{\_\G,
there exists 1tze G @ [@o), | | =1, guch that (1. ]}_: qubs, Lo
(i) If (X, | ”)'is reflexive, then for every G a cloged linear G @p[x :
in X f:md for any x, € X \@, there exists an element ., € 0
such that relation (1.4) is true. e
' y § and by Coro 3 I
The proofs follow by the above theorem and by G L
(‘rorullarst 21.)2 and Corollary 2.4 from [8] pp. 91—92. We omit 1}';1]13 de;o;aiesil
| 2. Let (X, l-l) be a normed linear space sljichttiﬁti(i BSIGI;l(:BI‘atBS
' 7% |+ |)) is smooth, ( , )F the L-semi-inner proc uct wiieh ¢ !
%Tea 111((;:('n; iutp)f\"qa 1inea.r,s(;1:l};'p&ca in X*. Then the following sentences

are valid : . T
?Jil)c It Fis o (X%, X) — closed in X*, then for Gvery1 fot Ea%*\ﬂ there
oxisty a functional g€l @ [foly llgs |l =1 such v
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(1.7) e(f) =Lh oLl Jel®[ /ol

(ii) If the wvnit sphere Sp: = F'nSex is o(X*, A) — compact in X*
then for every fe X*¥\ I :c there exists a functional g, € £'® [f,],
llgr, | = 1, such that (1.7) is valid,

(iif) o If S, is weak*® gequentially compact set in A%, then for every

f e X B\ F there exists g, I' @ [fy] such that (1.7) holds.
The proofs follow by Theorem 1.4 and Dby Corollary 2.5,

2.2 and Theorem 2.3 from [8] pp. 94—95. We omit the details.

Now, we shall point out a result that gives a characterization of
chebyshevian subspaces in prehilbertian spaces.

1.8. TunmonEm. Let (X ;(, ) be a prehilberiian space and G a proper
linear subspace in X. Then the following conditions are equivalent :

(i) G is chebyshevian in X ;

(i) ' For every xy € XN\G, there exists an element w,, € G®Tay], |u,,l = 1,
sueh that

(1.8) ee(w) = (7, u,)l, 2l @ |x].

Moreover, if v, € G@ [x,] 18 another element with the property (1.8),
then there eaists « scalar k€ I such that v, = My, and )i = 1.

Proof. *(i) = (ii)”. The existence follows by Theorem 1.8,

Let us suppose that ay, ve,e G (in I, : =G @ [7,]) and since

dim (G4) = 1 in F,, there exists » € K such that v, = ..
Then by the previous relations we obtain :
eo(%) = (@, v,) | = (@, Nx)| = [M] (@, 1s,)| = [(Mea(®), e & @ [a],
that implies |af == 1 and the first part of theorem iy proveu. :
Y(ii) = (i), It is evadent by Theorem 1.4 and by the fact that pre-
hilbertian spaces are strictly convex spaces (sce [8], Covollary 3.3, pp.
102). We omit the details.

1.9. Corollary. Let (X ; ( , )) be a prelilbertian space and H « hyper-

- plane containing the nwll element 0. Then the following conditions are equi-

valent : .
(i)  H s chebyshevian in X ;
(ii)  There exists an element w e X, |ul =1 such that
(1.9) en(r) = (2, w)], aeld.

In addition, if « isx another clement with the property (1.9), then
there exists % e I¥ such that v = »u, where 1! = 1.

2. Charaeterizations of reflexivity. The distance functional e, was
utilized by V. N, Nikolski and I. 8. Tiuremskih (see for example [8],

Theorem 6.8, pp. 142 and Theorem 6.9, pp. 144) to characterize the retlexi-
vity of general Banach spaces.
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2.1. DurristrioN. The Banach space (X, ] -]) has the (B/)- prop_ertji;
it for every inercasing sequence of closed linear subspaces (Gp)aen in
such that :

! !
(2.1)) {0}=6G,c G c@, < clG, cGu= ...y NEN;
and for any sequence of real numbers (e,).en satisfying the condition

> — o = ;\7
{2.3) Ca= O 2 oz oo 2 0y Z Cpyy =Cpgg ™ -0 T 0, ne

there exists an element » e X such that:
(2.3) eoa) = e, e,
Now, we can give Nikolski’s theorem of reflexivity.
" 1 e 7] D Mo er o
2.2, Tusorun. A Banach space (X, |[-]) has the (Bp-properly if
and only if it ts reflexive. .
] 1 1+ 13 . q N 1< 5 X ‘he 1Tol-
For the decreasing sequences of 1.1110&1 subspaces we have the fo
lowing theorem due to I. S. Tiuremskih.

2.3, Tarorea. Let (X3 I+ )]) be @ Banach space. Then the following
conditions are equivelent : v ]
(i) For every decreasing sequence of closed linear subspaces ((Fy)uen SUCH
‘ that :

J LA ; v A .
(2.4) X =G, 26, 56,>...56G, <Gy ..., nelXN;

[

and for any real sequence of (€p)nex satisfying the assertion :
(2.9) 0 =1¢ < ¢ <€ < < €, < 6hyye e S €< OO
there eaists an element o e X such that

(2.6) L= lim e, and ey (®) = ey, keN;

{00
V1 efleatve Banach space
(ii)y X 1s a reflexive Banach space.

FFor the proof of these theorems we send to [8] pp. 142~14»~1~. o)

Now, by use of Theorem 1.1, we give a characterization of reflexi-

N ’ v i ) i . - PR s oqe 3L e ‘
vity for smooth Bamach spaces in terms of the distance functional.

9.4, TurorEr. Let (X : U1 be a smooth Banach space and (,)r of
PP o -k 4 AL R » ! i

the L-semi-inner product which generates the worm |- Il Then the following
conditions are equivalent :

(i) X s a reflevive Banach space ; - — , AW
(iiy Hor any proper closed //_{/j)(%}‘plﬂ.{.)l(% el ('onl(mzj,u_r/ the null element 0,
; there edtsts a veclor wye X, lugl =1, such that

(2.7) e{w) = (@, up)pl, aeX.

f A Lo ! He b T
Proof. “(i) = (i), It is evident by implication “(i) = (ii)” of Theo
s N 7 X w .
rem 1.1, since every closed hyperplane in X is proximinal.
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“(ii) = (1)”. By the implication “(ii) = (i)’ of Theorem 1.1 it fol-
lows that every closed hyperplane containing the null element ix proxi-
minal in' X and by Corollary 2.4 of [8] pp. 92 it results that [ is retlexive.

2.5. CoroLLARY. Let (X, | -|)), be @ smooth Banach space over the real
number field. Then the following sentences are equivalent :

(i) X 4s a reflexive Banach space ; 7 ,
(i)  Yor any proper closed 71?/]26’!']31(“?(’« ]I conlaaning the null element 0,
there exists « vector uy € X, uy,| = 1, such that

(2.8) en(#) = (%, uy)y |, @ed.

2.6. COROLLARY. Let (X, |- |))be a smooth Banach space over the
complex number field. Then the following assertions are equivalent :
(1) X s a reflexive Banach space ;
(i)~ For any proper closed hyperplane H containing the wull element 0,

there exists a vector vy € X, |log| = 1, such that :
(2.9) en(®) = [(@, vy)d + (o, o3 V*, ae X,

Finally, we give :

2.7. Turorem. Let (X, |- |I) be a smooth Banach space. Then the
Jollowing conTitions are equivalent :
(i) X s a reflexive Banach space ;
(i) For every G a proper closed linear subspace in X and for any xy € ANEG
there exists an element ug,,, € G @ [a,],

e, |l =1, such that:
(2.10) ee(@) = [ (2, UGm) |1, @€ G@®[1x,),

where (), denote the L-semi-tnner product which generates the noru |- |
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