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NOTE ON THE CUT VERTICES IN A REGULAR GRAPH

DANUT MARCU
(Bucharest)

Introduction. In this paper, we consider undireeted graphs without
loops or multiple edges. The maximum number of cut vertices in a con-
nected graph on » vertices with m edges was determined in [2]. In [3],
the maximum number f(n, d) of cut vertices is determined in a connected
graph on » vertices, which is regular of degree d, when d < 4. In [4], are
obtained results which yield on upper bound for f(n, d).

In this paper, we obtain a better bound for f(n, d). We also determine
the exact value of f(n, d), when d is odd and the remainder obtained by

dividing n—2d—4 by d 4 1 is less than il 1. !

The Main results. Throughout this paper, we assume that dis an odd
integer > 3, and « is an even integer > d - 1.

Clearly, f(d +- 1, d) = 0. So, we assume that » > d -- 3, in what follows.

LEMMA.  If G is a connected graph on « vertices which is regqular of
degree d, then G has at most b(n, d) blocks, where

: 2n —d — 5
b(n, d) = ——-— .
41

Proof. Since any pendant block of a graph which is regular of de-
gree d has at least d - 2 vertices, it follows that if » < 2d + 2, then ¢
is a block. So, let n > 2d 4 4.

Let k De the number of blocks in G and let ny, ny, ..., n; be the
sizes of the hlocks. Since G'is connected, #, > 2. Since G'is regular of degree
d, it follows that if ' > 2, then the number of edges in the 4-th block is
at most g(n,;), where

gng) = min{( ni) ! [M]} |
2 2

We prove the lemma by showing that k > b(n, @) leads to the con-

! dn L]
tradiction e > Y glng).
i=1

e
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Thus, let & > b(n, d) + 1 T1 is 1\11(1\\11 (w(' IIJ llni Z Wy ="+
" i=1
. E—1
4+ %k — 1. So, the average « of 2y, gy ooy My is il At . Since

k
4 1 n—1 . . . o
k> LJ(’M +1) > »%wvr (the second inequality simplifies to
d+1 d—1 m It
A< n(d— 3) 4 4, we have @'< i We now  show thu nd, Vg L] 9y
13
can be rveplaced by Py, Pay - -9 Poo such that Z n; = 2 P cach py is
k
either 2 or > « and Z g(ny) E g(p;). Let 3 < s < @ Then, there is

some n, > a. Il d = 3, then < 1 and 90 ns = 3. When d = 3 and n; is

: Ny 4 3 71;—{—3 A s 2
odd, we replace n; and n, DY = and TR L . This  dees nob;in-
é 9
2 -
. 3n, — 1 3n, + T v 4
‘crease g(ny) - g(ny), since 3 - i < [ tgjf—e . Next, let d'= 5 or
] g
d — 3, and n, be even.
Then; we show that
. (0 .
(1) ) g <Ak gl e 2),
—

50 that n, aid n, may be replaced by 2 and s -4y — 20 Wenconsider

several cases.
Case 1. n, < d and »ny +n, — 2 < < d. Then, (1) reduces to 2(ny 4

4 ny) < sty + 4, and this is evidently, true.
Case 6. n, < d and ng 4 ny —2 2 d-4 1

N, Ny ) d(’)?s —+ Ny — 2) — 2
) -+ < I - =H
2 2 2

g0 that (1) holds again. :
Case iii. m, > d 4- 1. Then, ns 4+ 0, —2 > >id 41, d =3 'and %
is even, then it is easy 1o see th% oquwht) holds in ( ). So, let d >'5

n—2)— ek, -2) =2
Replacing [dn, l]bL dn, dl\d(nﬁ ng—2 ) L be d(l;_wt _)_
2 2 2 2
inequality. (1) becomes i
(2) (d — n)(mg — 1) > d — 1.

I n, < d — 1, then { 2)'is ewdenblv true. If n, = d — 1, then dn, and
d(ns 4+ ny — 2) are bofh even or' both odd, and so (1) aomn holds. Now,
et ¢ be some p; = « and let

Then, we have
¥

’

[}

(3) «(q) = ﬂ:_(_n;ii;ll
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Then, we' show that

4) ) 4 ofg) <2 HDTL

2 k
We eoi]side.r three cases, separately.
Case i. ¢ < d. Then, (4) simplifies to
(g —1) —(n — 1) (g + 1) +dn > 0.

Sinee ¢ > a, we have k(¢ — 1) > n — 1. Thus, to prove (4
- @, 1) =zmn» . . prove (4), we have t
show that (d — g)n -+ ¢ > 0, and this is cvideht]y true. iy i
Case 1. ¢ =d -+ 1. Then, (4) becomes

gi(d —2) 4+ dg — 4 + n(4 — 2d) > 0.

Now, using & > b(n, d) + 1 and 4d — 6 > 0, the re i
is) casily mroned. , &) > 0, the above inequality

Case . ¢ > d + 2. Then, ¢(q) < — d(] i
2
dg — 1
2

! So, replacing ¢(g). by

, (4) becomes

I(dg — 2¢ + 1) 4 3n ++ dq'— 2nd — 31> 0.

Using & = b(n,d) + 1 and ¢ > d 4-

2, it is enough to show that
w2d* — 1) 4- d? — 3d® |- 3 > 0,
and this is evidentently true.

Ip : he " ' ] Taft il : .
. ‘,l_hub, whenever ¢> @, (4) is satisfied. Let ¢y, ¢ . . ., ¢o be the num-
bers, in, Py, Poy v+0 Pi which are > @ and let § be the number of '27s
in Py, Poy « ooy P Then, ‘

£

E U-(_qj) — Zs Q‘J"" _{”_?_L W 1)

= 7|/ TGS =0 B.
j=1 j=1 -k —1 ‘
k c -3 - . )
Hence, 21 gp) = 8-y 9(a) 2‘, a(q;) + #(q;)] <f~ }3 [«(qs)
i= j=1 =1
+1y =2 |
2

I3 &
Since Z g(n;) E (p.), we avive at a contradiction, which pro-
- iz

ves the lemmm O

m
Prugorwar 1. The maximum wwmber of blocks in a connected graph
on n vertices which is reqular of degree @ is b(n, d) or b(n, d) — 1. If n =

=2(d -+ 2) L ¢(d+ 1)+ 38, where 0 < § < A4 then

, the maximum
s b(n, d).

2
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h Proof. Tiet n = 2(d + 2) - s(d - 1) 4+ 8, where 0 <3 < d -+ 1.
Define G(n, d) to be the graph shown in figure 1, where Ba, B ... Y &

O—O—-==--——0—0
B, B, Bos, - gowios

TFigure 1

ave complete graphs ond 41 vertices with one edge removed, B, is a block
on d-+ 2 vertices, Bsyqis & block on @ + 2 + & vertices and By, Bgy .-
wvry Beyy are such that G n, d) is regular of degree d.
Clearly, G(n, d) has 2s -+ 3 blocks, and b(n, d) is 2s 4+ 3 or 2s + 4
. d -1 d 1
according as 8 < ——i — ord = -—+ 2 The theorem now follows from
] (3]
- -

lemmma. [

Teaworey 2. The maximuwm number of out vertices in a connected
graph on n vertices which is reqular of degree d is b(n, -2 or b(n, d)-1.

. 1 | i
If n=2(d+2) 4+ s(d 4+ 1) + 5, where 0 <3 < —_}——;*, then the mawr-
f)
2
mam ts b(n, d) — 1.
Proof. The theorem is an immediate consequence of theorem 1, since
in any connected graph the number of blocks is at least onc more than
the number of cut vertices. Ol
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