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Abstract. Some theorems of deconiposilion for a class of smoolh wormed Jinear ‘;par(x endowed
with a derivable semi-inner product are given.

0. Introduction. Let (XX, ||'])) be a real normed linear space and
f+X - R the function given by fla): = 1/2 ||x|]? for ze X. We recal
the notion of semi-inner product in the sense of Tapia (see [1] pp.
389--390 or [7]):

0.1. DEFINITION. The mapping (,)r: X X X — R given by

{0.1) (@, y)r : = hrgl Uy + to) — f()lft, my e X
L)
is called semi-inner product in the sense of Tapia or Z-zemni-inner’ pro-
duct, for short.
We list some usual properties of T-semi-inner products.

0.2. PROPOSITION. If (X, |||) 45 a real normed linear space, then
(i) (@, @) = [l 2]" for = € X;
(ii} (awy By)e = aflw, y)r for o8 € R, af > 0 and o,y e X} -
(iii) (e 49, @) = «lz|]2 + (¥, @)y for o€ R and z,ye X
(iv) (=@ 00 = (2, ~y)y if wyeX;
(v) (@ g Sl allllell 4 (e for @l iz, 5 2 el
(vi) @, )| < Nl lyllif @yeX;
(vii) () is subadditive and continuous 'in tle first arguracnt,

For the proof of the pi’dvious properties of 7 mi-inuer products
we send Lo (6] 1p. 3839 and [17] p. 359.

The following characterization of smooth noimed linear bpaus in
terms of 7-semi-inner products holds.
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0.3. PROPOSITION. ([1] p. 392) Let (X, ||-|) be & redl normed linear’

space. Then the following sentences are equivalent':

(1) The norm is Qdteaux differentiable on ANJ0}, 1.e., (X,[|"]}) ts @ smooth
normed linear space;

(ii) (,)r 18 homogeneous in the seccond argument;

(iii) (,)p ts homogeneous in the first argument;

(iv) (y)p ts Lnear vn the first variable; ‘
If (X, ||']] %8 a smooth normed linear space, then the following tden-

Uity holds :

(0.2) (4, @)y = lim [(@, @ 4 ty)p — |2 |21/t for all x, y € X.
-0

For the proof of this fact see Lemma 1.2 of [3].

0.4. DEFINITION: ([L] p. 386, [3]) Let X be a real linear space. A~
mapping (,)r: X X X > R is called semi-inner product in the sense of

Tummer (L- sr‘lm-mner produet) if the following conditions ave satisfied ;

(i) U@ by e = (w2 (g, 2 Tor @, 3, 28 X
(i) (2, ¥)p = Moy y)y for AeR and =z, 9 e X;
(iii) (@, ), >0 if o # 0;

(iv) (@, 90 < (@, @) (7, 9)y, for @, y e X;
(V) (@, W)z == Nw, ), for neR and @,ye X.

We note that the mapping X s 2" (#, 2)V2 ¢ R, is a norm on X

and the functional given by X s % (@ 9)r e R is a continunous

linear functional on the normed linear'space (X, || ).
0.5. PROPOSITION ([1] p. 387). Let (X, ||-]|) be « normed linear space.

Then (X, ||1)) %5 @ smooth mnormed Unear space iff there exisls a unique .

L- smm—mne? product which generales the normn | *|.
By the use of the notion of continuous IL-semi-inner product, i.e.

a L-semi-inner product which generates the norm and and satisfies the

agsumption :

(0.3) Lim (y, @ -+ ty)y = (y, @), for all 2,y e X
=0

we ‘have the following characterization of smooth normed linear spaces.

0.6. PROPOSITION. ([1] p. 387). Let (X, ||']]) be a real normed linear:

space and let (,), be a L- Sevm' tnner product which generates the norm || -|.
Then (,)r s conttnuous iff (X, ||-|) 48 @ smooth normed linear space.

It is known that the semi-inner product in the Tapia sense is a
L-semi-ibner product iff the normed linear space is smooth (see [1]
p. 392).

Now, we recall the well-known concept of orthogonahty in the sense
of Birkhoft,
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0.7. DEFINITION. Tiet (X, ]| ]]) be a normed linear space and x, y € X.

“The element # is said to be orthogonal over y if

(0.4) @ -+ tyl = |lz| for all ¢eR.

We denote this by # L gy.
By the theorem of R. C. James (see for example [8] p. 85):

0.8. THEOREM. Let (X, ||‘]|) be a real normed linear space and o a
given real number. Then the following sentences are equivalent

@ o L opaw -y,
(i) — i(# —~y) < - alol] < (@)

where  ©(w, y) : = ,l}f:n (le 4+ 2yl — Nla)/t = 1/ |2l (y; @)x  for @ yeX

and x # 0;

we' conclude that in smooth normed linear spaces Birkhoff’s orthogonality
is fquwalent with Tapm@ orthogonality and with Lumer's orthogonality
)&kp{)(’!udj, .6,

(0.5.) o L sy Uf (4, w2 = 0 Yf (y; @)p = 0.
. Finally, we recall Tapia’s theorem of representation (see for exam-
ple [1] p. 400):

" 0.9, THEOREM. Let (X, |- |l ) be a real Banach space. Then the follow-
ing sentences are fquwalem

(i) (X, |I-1)) s @ smooth reflewive Pcmacm space ;
(ii) F07 any f & X* there ewists an element wy € X such that
(0.6) f(@) = (@, up)z for all zeX

and [If} = llusll

1. Derivable semi-inner products. Let (X, ||:]l) be a normed linear
space over the real number field. We give the following definition.

1.1. DErFINITION. The 7T-semi-inner pr oduct is gaid to be continuous
on X if the following conditions holds

(1.1) lim (y, @ -+ ty)e = (y, @) for all @,ye X
: I -0 |
Now, we ean give the following charcterization of smooth normed
linear spaces in ferms of continuous T—scml—mnel products.

1.2. ProposITioN. Let (X, ||-]]) be @ real normed linear space. Then
the following sentences are equivalent

(i) (,)r 18 continwous on X ;

(ii) (X, || ) 98 a smooth mormed linear space.
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Proof. (i) = (ii)"?. By the properties of 7T-semi-inner product we
have

{lw =yl = Nlolhfe < (g @ + tya/llo + 25 )

7

G2) 0 gy ww) ]
and

(13) (o syl + syl < (o + syl — lel)fs < () Dallla]

forall m,ye X, 2z # 0and t > 0,s < 0.
Then we obtain :

il + 2yl — lle i/t = (y; @)r/llw|| and
131.111()1 (lz + syl — llel)/s = (@ y)z/ |zl

forall z, y € X, ##0, i.e., the norm is Gateanx differentiable on XX\ {0}.

‘i) = (1)”. If (X, [|-{) is a smooth normed linear space, then (,)z
is the unique L-semi-inncy product which generates the norm || (see
[1] p. 392) and by Proposition 0.5. we deduee that (,)p is continuous
on X, ,

The proposition is proven. )

1.3! DrEFINITION. Tet (X, | -|) be'a smooth linear space and (,) the
gemi-inner product in the sense of Tapia or Lumer which generates the
norm || +||. Then (,) is called derivable on X if the following limiit :

(1.4) (y, @) : = thgn [(yy z + ty) — (y, @)1t

exists for all @, y in X.
Now, we introduce the following class of smooth normed linear
spaces.
1.4. DEFINITION. A smooth normed linear space is called of (D)-type
if the sewi-inner product in the sense of Tapia or Lumer is derivable.
1.5 Exasrurs. 1. Kvery inuner-product space (X (,)) is a smooth
normed lincar space of (D)-type. ' = ' ’
Indeed, since for any z,y € X we have:

(1.5) (y, @) =lim [(y, & +ty) ~ (g, @)]fe' =Yy

2. Let (X5 () be a prchilbertian space over the real number
field and 4 :X - X be a nonlincar operator with the properties:

(a) A(or) = adw for e R and z € X;

(aa) (#, Aw) > 0 for w e X and (v, Az) = 0 implies ® = IO;
(aam) (@, Ay) |2 < (@, Az) (y, Ay) for all 2,y € X;

(av) Hm A(x + ty) = Az in (X, ||'|)) for all @,y € X

=0

-exists for all @, 9 e X ;
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(v) the Gﬁ.t’.eaux differential (VA)(#) - y: =lim [A(x + ty) — Ax]lt

t—0

then (X, | -”,1). where ||zl == (2, d2)'2 for 2 e X is a smooth noiwed
linear space of (D)-type.

Indeed, putting (j)u: X X X - R, (2, 9)a: = (=, Ay), then (,),is
4 continuous Z-semi-inner product and since

(1.6) (yy @)a = (y, (VA) (2) - g) forall o, y e X,
then (X,|l-l4) is a smooth normed linear space of (D)-type.
T I - . ) N
_ Now, we shall give some usual propeitics of semi-inner product
derivative in a smooth normed lneal space of (D)-type.
1.6. PROPOSITION. If (X, [|-])) 4s s above, thew :

(i) (ry) = llyll* for all ye X;

i) (5, 0 =yl for all y < X

(iii) (ayy @) = oy, @)’ for « e R and a,y < X;
(iv) (s aa)” = (y, @) Jor all o € R\J0} and ., Yy N
(V) ol leli® (y, 2)" > (y, @) for all @,y e X.

_ Proof. The sentences (i) and (ii) are obvious by the definition 'of the
semi-Inner product derivative,

i (iii). If ¢ =0 the identity is valid. Now; let us suppose' e # 0.
Lhen f ' '

(ayy ) N 1}113 [(ay, & 4 ot y) = (ay, a‘*)J./ﬂ o 132)1 [y w - aty) —

~ W et =« Um [(y, @ 4 oty) — (y, 2))/ot = o lim [(y, 2 L gy) —

10 §--0
=y, @)]/s = (y, 2)" for all z, y e X.
(iv). If « % 0, then we have:

(3, aw)’ = ‘j}jol [(y, we |- ty) = (g, o)t == J}H;l [y © 4 tay) —
— (y, @)/t ::th'én [(yy @ -+ tay) — (y, 2))/(Ha) = lm [(y, & + sy) o~
— s0

— (¥, @)1/s = (y, x) for all 2,y € X,
(V). From relation (1.2) we have
(s 2+ ty) — (s @) 2y, '2) o 4 el — Jel)/loll, oy e X, @ # 0
from where there results '
[y @ +2y) — (1, 1)t > (9, @) (o -+ tyl] — o)/ ]) tor oy e X,
z # 0 and #'> 0. Then we obtain
(4, @) > (y, @)*/[lo]* for @;y-¢ X and @ # 0

and the proposition is proven.
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Another result is embodied in the next propositi_on.. |

i 7 ProrosrrioN. Tet (X, ||]) be a smooth normed linear space of
(D)»L’@/Q;e'cmd xyy lwo given elemenis in X. Then the mapping
(1.7) ¢zv: R = Ry  @py(t): = ||@ 4 Wi te R,

Toative tive
ts dertvable of two orders on IR and the second derivative is nonnega
on [R. In addition,

(1) Pro(t) = 20,0 + ty) for all 1 € R ;
and
(i1) omu(t) = 2(y, @ - ty)’ tor all ¢ € [R.

Proof. TLet ¢, ¢ R. Then we have
I i _ a5 1% i 2)/h
1‘1_210 [eru(t) — @uu(ty)]/(T — to) = 1;2}) (le 4ty -+ hy | lz + toy ||

= 2(y, @ + tyy) for all x,y ¢ X.
rgol ati it} is similar and we omit the details,

The proot of relation (ii} is simi omit | r

Thle 1sjecond derivative of ¢, I8 nonnegative from the property (v)
f Proposition 1.6. a ]
0 1121 the sequel, we ghall give a Simpliﬁ; proof lfi(g; ’;3% lfeq;g; :éel;geq;onelfi:_

en Birkhoff’s orthogonality and the orthogona b ‘

‘i};i]eé; product for thobsrnooth. normed linear spaces of (D) typo L

1.8. PROPOSIITON. Let (X, |[-]) be a smooth space of (D)-type.
the j"olfowmg_ assertions are equivalent :
(i) @ L gy ;
(ii) x L yie (y, ) =0,

Proof. By Taylor’s theorem, we have :

e + ey P = flell* + 2y, 2)t + (y, o + Ey)’ 12
‘here £, is between 0 and ¢, . ’ |
e It t.rc 4 sy then [z 4-ty|2 > |j2|]* for all teR from where there
results ,
2y, @ - Ey) + 20y, @)t > 0 for all e R

which implies (y, ») == 0, i.e., @ L g.

If # L y, then .

llo 4 oyt = fel = (y, @ + Eg)? >0 for all teR,

ie., # L gy and the proposition is proven,

TFurther on, we shall give a characterization theor?m 1())f tpregulbertl_n
an spaces in the clags of smooth normed linear spaces of (D)-type.
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L.9. THEOREM, [t (X - ve a smooth space of (D)-type. Then
the following sentences qre equivalent :

(1) (Xy [I+l) 4s prehilbertian space;

(ii) The Mapping ., : R — R, dou(t) = (y, te)" is comtinuous in (
for all @,y e X;

(iii)  For every @,y e X there ewists o sequence o, & RN\{0}, @, - 0 such
that Lim (y, @) = (y, 0)’;
U EETs o

(iv) For every Ty yeX we have (y, ) = |y II2.
Proof. “Y(i) = (i), Tt i§ obhvious observing that (1, @) = ||y
H(i) = (D). Tt ig obvious,.
(i) = (iv)". Let HyeX and o, c R\[9} with the above broperty,
Since (y, z)’ — (¥ w2)’, we obtain: '

(yy 2) = hiln (Y oaw)’ = (y,0)" = Iy .
“iv) = (i), By Taylor’s theorem, we have :

I+ tyll> < Jlafle 4- 2y, 20+ gl forall ¢ e,
which implieg

2+ 91 +llo ~ 9l < 201 + 1y for an myeX

and then (X, | ‘1) is prehilbertian.
The theorem ig proven,

2. Semi-inner produets with hounded derivative, Let (X, |- be
& smooth normed linear space of (D)-type and (;) the semi-inner product
which generates the norm IRE(B S

. 2.1, DEFINITION, The semi-inner product has a bounded derivative
on X if there exists g real number % Such that & > 1 ang

(2.1) (@9)" < E2fle| for all 4, ¥, -
The best numbper 7 such that (2.1) is valiq ig called the hounded-
iess module of the derivative (+)" and we denote {hig number by Ji,.
Now, we ean define the foﬂowing-clz;ss of smooth spaces of (.D)-type.

2.2. DEFINTTION, A Smooth normed lineay Space is called of ( BD)-type

if the semi-inner product which generates the norm has a bounded deri-
vatives.

2.3, EXAMPLES, |. Lvery inner-product Space (X5 () is a smooth
Bormed linear space of (BD)-type.

2. Let (Xx; (;)) be a prehilbertian Space over the real number fielg
and 4:X - X g nonlinear operator with the properties : (a), (aa), (aaa),
(av), (v) (sce Bxample 1.5.2) anq
(va) IVA) (@) gl < 2y for all 4,y € x,

thon (X, “lla) where Jloj, : = (@, Ao for all ge x is a smooth nor-
Mcd linear space of (BD)-type. '

2=c. 1577
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The following result gives a characterization of inner-product spaces
in the class of smooth normed linear space of ( BD)-type.
2.4. TurOREM. Let (X, ||+]]) be a smooth space as above. Then the
Jollowing seniences are equivalent :
(1) (X, 1) 9s an inner product spaces ;
(i) The boundedness module of (,) 4s 1.
DProof. “(1) = (ii)”. It is obviously since (z, y)’ = [l for all 2,y € X.
“(ii) = (1)”. By Taylor’s formula we obtain
e+ yI* < lel* + 20y, #) -+ ly P forall o, y € X
which implieg
Tz -+ gl < el + 202 y)+ lylp for all o,y e X.
Then we obtain
o+ I < ol + 20z, y)t + Iyl for all w,yeX and teR.
Let i€ R, ¢ > 0. Then:
(e 4=ty [ — |

which gives for ¢ -0, £ > 0:

@)t < (=, y) -+ ty|]?

(s, ) < (@,y) for all o,y e X,

and then by symmetry : (#,y) = (y, #) and (X, ||-|)) is an inner product
space.

The theorem is proven.

2.5. DErNITION. Liet (X, ||-])) be a smooth normed linear space of
(BD)-type and &, : = k- the boundedness module of semi-inner product
derivative. If ee [0,1), then the element ze X is said to be ¢ — ky —
orthogonal over y if

(2.2) Wy @)] < koe L2l U,

and we denote this fact by « Ijj_ .
2.6. REMARK. If (X; (,) Vis an inner product space, then in (2.2)
we can find &, = 1. Then we have
(2.3) Iy, @) < ellzfl yl]
which will be denoted by @ J; .

I in the previous definitions we corsider € = 0, then we recapture
the usual orthogonality in the sense of semi-inner product or the usual
orthogonality in prehilpertian spaces, respectively.

Further on, we shall give the following generalization of Birkhoff's
orthogonality.
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2.6. DEFINITION. T.et (X, ]I-1) be a normed line [
: ‘ D ) NN , ar space, e [Q,
and 2,y € X. The element ¢ € X ig Sald to be e-Birkhoff ogthop"onavl %0‘;3
the element y and we write that z | gy if )

E

(2.4) lz 4+ tyll = (1~ ¢) | x| for all t e [R.
The following proposition containg a connecti wee — %
orthogonality and e-Birklioff orthogonality. P Bofmgen < i
2.7. PROPOSITION. Let (X, 1) be @ smooth nos )
) ‘ . Let (X X L normed linear s
J({ LI?)-ZMJG and ky the boundedness module of semi-inner product der?@i’;i@zf
foyeX andce [0,1) then the following sentences are valid ; '

. %,
i : A | ., .

(i) x ;L 8Y tmplies x 5](_E)y with 3(e): = [e(2 — o) ]2,
.. . . ko

(ii) wn{e_) BY tmplies x L y with ne): =1 — (1 — e2)irz,

Proof. We shall start to Ta,lylor’.s expansion :
Il + Wikt =z + Ay, o)t + (y, @ - )t for teR.
where £ is between 0 and i.
(i). If @ L gy, then

_ A —e)aP <|le+ byl for all te R,
which implies

=2 el < o+l — ol <2y, o + (g, 0 + £g) ¢ <

< 20y, @)t 4 klly |2 2 for all 1 e R,
ie,,
Killy 1262 + 2@y, w)t + (2 — ) llzl® >0 for all teR
which implies
VAA = (y, 2)* — k(2 — ¢ lz)* Myl < o

foe ko
irom where there vesalts : 2 Ly with 8(e): — [6(2 — e)Ju
8(e)

7 The second affirmation follows by (j ituting ¢ [
We omit the o aff ollows by (1) substituting e by n(=) & [0,1).
Further, we shall analyse the prehilbertian case.
~ 2.8. PROPOSITION. Let (X5 () be areal prehilberts nd &
Then the Jollowing rf;ff’r‘iﬂ-m.at'iau:? ,hold: g e A L

i) TF .
(1) @ ;L sy iff ms(_i_) Yy where 3e) s = [e(2 — 8”1/2;

i) " )
(if) ccné_)y f @ Ly where yn(e): =1 — (1 — g2 112,
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Proof. (i). We must only prove the implication («). It is clear
that :
o -+ tyilt = flel? + 2(y, @) + fy2 for all e R.

It @ Ly, then
3(e)

ly %° ++ 2(y, &)t + (2 —¢€) |22 >0 for all ¢eR
since A € 0, from where there results :
T eyl — 2l > (s - 2¢) o2 for all te R,
which gives o L gy.
The SGCOleld affirmation is obvious.

The proposition is proven.
4

3. The ¢- /50 orthogonal decomposition. We shall begin our considc-
rations with some general results which work in the normed linear spaces.

Let (X, ||-]}) be a normed linear space and ‘A its nenvoid subset,
i F 1 ,
By A° we shall denote the set given by :
ig
(8.1) A ={yeXly J_BmeI qlla,eXJ,

where e is a given real number in [0,1). This sot will be called Lhe “—PlI‘lx-
holf orthogonal complement of A.
lg Ly
Tt is casy tosee that 0 e 4°  and 4 n A :
The following lemma is valid.

< {0} foralle e [0, 1).

3.1, LeMMA. Let (X, [|-|) be a normed lnear spaw and B be ils

closed linear subspace. Suppose E # X. Then for ever yee (0 1) the e- Birk-
hoff orthogonal complement of B s nonzero.

Proof. Let § € X\ . Since E is closed, d(y,E) =d > 0. Thus there
exists ¥. € X such that d < |y — y.]] < d/( 1 — €)

Putting a.: =¥ - 4, we have z, # 0, z‘and for overy ye I and
re L
e + 2l = 1T — ye o+ gl = 1T~ (e — ) > 4 3 (L — o))
Ly

W hat ‘mearis th%t w.€ B° and the lemma is proven.
The following decomposition theorem in general normed lmeflr
spaces holds. _ '

52, THEOREM. Let (X, |- be a normed Ime(w space and I be its
closed lmem Subspacc T/zen jo’r every < € (0,1) the following decomposition
holds : A E

o

(3.2) Sdiog o ) LK =8+ B

11 A CLASS OF SEMLINNER PRODUGTS 121

Lroof. Suppose E # X and e X.
; . g
Hael,then ¢ == 2 0 with v € £ and 6 € E°
If @ ¢ B, then there exists y, € B such that 0 < d — Ao, B) <z —
— !I_\\ d/(l o E) i

Since PR CE Y. e Bt (sce . the proof of the above lemma) wé
obtain » = y. + . and relation (3.2) is valid.
Further on, we shall apply these results in the pfu L1(;117’u case A)F'
smooth normed linear space of (BD)-type. P
- Let (&, || -]y he-a smooth normed space as above and 4 a :nonempty-
N TN e
subset in X. Then by 4 s we shall denote the sct :

ko
L ko
(3.3) Aﬁ:{yeX,’yLmforallmeA},se[O,l),

where &, is the boundedness module of (,)’, which will be called the e — k-
orthogonal complement of A in X.
B, LmamA, Let (X, || -|l) be ¢ smooth normed linear space of (BD)-
type (md B be its closed linear subspace, ee(0,1) and B # X, then the
e-ly-oriohgonal complement of E “is nonzero.
Proof. Liet e (0,1) and () :/1 — (1 — e)%  Then w(e) € (0,1).

Applying Lemma 3.1 for y(c), there exists an element @, #0 and x, e ™
L i
Since B < B (see Proposition 2.8), the lemma is proven.
Finally, we have the following e-k,- orthogonal deccmposition of X.
3.4. THEOREM Let (X, |1-1)) be a smooth normed linear space of (BD).
type, B be its closed lmem‘ subspace in X and < e (0,1). Then the follow-
ing decomposiiton holds :

%o

L
(3.4) X =E 4 B,

Proof. Let ee(0,1) and se) =1 — (1 — 82 e(0,1). If we X,
L p
then there exists o, € F and y, ¢ " snch that 2 — Ty (See Theorem
ko

B L
3.2). Since B < p- (see Proposition 2.8) we obtain o = e + y. with
k(l

L
€ X and y, s F* and the theorem is proven,



122 SEVER SILVESTRU DRAGOMIR 12

REFERENCES

{.Dincd G., Variational Methods and Applicalions (Romanian), Ed. Tehnicd, Bucuresii,
1980.

2. Dragomir S.S., A characterization of best approximalion theorem in real normed linear
spaces (Romanian), Stud. Cere. Mat., 39 (1987) 497—506.

3. Dragomir S. S. MHepresentation of conlinuous linear funclionals on smooth reflexive
Banach spaces, L’Analyse Numérigue et la Théoric de I'approximation, 16 (1987) 19—28.

4. Dragomir S. S. Representalion of conlinuous linear functionals on smooth normed
linear spaces, L’Analyse Numérique ct la Théorie de L’Approximation, 17 (1988).

5 Lumer G. Semi-inner producl spaces, Trans. Amer. Math. Soc., 100 (1961) 29—43.

6. Pavecl M. Differential Equations Associaled {o Some Nonlinear Operalors on Banach
Spaces (Romanian), Ed. Acad., Bucuresti, 1977.

7. Tapia R. A ., A characlerizalion of inner product spaces, Proc. Amer. Math. Soc., 41
(1973) 569—574.

8. Singer 1., Best Approzimalion in Normed Lincar Spaces by Elements of Lincar Subspaces
(Romanian), Editura Academiei, Bucuresti, 1967.

Received 20.X.1988 Secondury School Bdile Hérénlane
1600 Bdile Hercnlahe
Romdania



