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BIFURCATION MANIFOLDS IN A MULTIPARAMETRIC
EIGENVALUE PROBLEM FOR LINEAR HYDROMAGNETIC
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Snmmary — Zusammenfassung. Bifurcafion surfaces in a mul{iparametric eigenvalue problem
from linear hydromagnetic stability theory. The neutral surface separating domains of linear
stability and instability of a Couette flow under an axial magnetic field is investigaled analy-
tically and numerically. A special attention is paid to the involved bifurcation.

Verzweigungsoberflichen in eine mancheparamelrische Eigenwertproblem auf die Theorie des
hydromagnelische stabilitdl, Die neu trale Oberfliiche das scheide die Gebiete von linear Stabilitat
und Instabiltit eines Couelte Bewegung hinten einen axial magnetisch Feld is ergrimdet analy-
tisch und numerisch. Eine speziclle Auf merksamiceil ist schenken der Verzweigungsirage.

‘ 1. The method. Most of the eigenvalue problems goved ning the
linear stability of iotion of continua (oceurring in hydrodynamics,
hydromagnetics, clagticity, aeroclasticity, vibration (heory) consist of
linear ordinavy differential equations of high order (» > 8), with con-
stant coctficients depending on several physical parameters a, @, Tk,
and some homogeneous boundary conditions. This high order suggested
the application of various methods, involving Wourier series, to solve
these problems. However, in pite of the tact that » is large the simplest
classical method may be used. This method was applied for the first
time to Phis kind of problems in [1] and analysed in detail in [2]. Accord-
ing to this method the eigensolutions are looked for in the form exp(2.w)
where the eigenvalues A; € O(i= 1,..., n) satisfy the characteristic equa-
tion f(%, @ Q, t,...) =0 such thatthe peneral solution of the given
equation is of the form P(x) exp 2. P,2) are polynomials of degree
k; < my— L where m is the multiplicity of A, Imposing the boundaiy
conditions the neutral hypersurface, referred to as neutral (or secular)
equation, is obtained in the form of a n-th order determinant I'(),
cos h i, sinh xd) = 0, where lis a characteristic length.

Various sections of the neutral hypersurface corresponding to fixed
values of all parameters but one may be determined by simultaneously
solving the characteristic equation f(3, @, Q, T) =0 and the neatral
equation written as g(Afe, @, ) = 0.

* Parts of this paper were accepted for presentation at the 1st Conference on Mechanics,
Praha, 1987.
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Although, gencrally, explicit forms for Ay as funclions of a, @
and 7' are not known, simplification may be deduced by examining the
characteristic equation. The characteristic equation may be thought of
as the implicit form of the function i — May, @, T,...) whose graph in
the space (Re A, Im 2, a, Q, T,.. ) 18 a hypersuface with » sheets. For
simple A, solutions of the characteristic equation (as in the case treated
in [3]) this hypersurface has » distinet sheets. However, the presence of
many parameters favour the existence of some hypersurface 1 = 7%
(@, @, ....) in the space of parameters such that at least one 2, ig multi-
ple. In this case some sheets of the characteristic hypersurface 2 = (g,
Q, T,...) coalesce and, correspondingly, ¢ vanishes identically, The
points of the hypersurface 7 = T* are bifureation points for the cha-
vacteristic and neutral hypersurfaces: this is why the hypersuifiace
T =-T* is veferred to as the bifurcation hypersui face.,

The presented method assumes two advant wges : (1) ib involves the
most reduced numerical caleulations if referred to all other meth.d .
Indeed, the neutral equation is exact, it has a finite number of terms,
bhis number is small and the terms arc expiessed a8 products of cle-
mentary (hyperbolic sine and cosine) functions; (2) it' puts into evidence
some bounds of the neutral hypersurfaces, shown for the first time in
hydromagnetic stability theory context in [4]. These bonnds are just
the bifurcation hypersurfaces of the characteristic and neutral equations,
As these bifurcation hypersurfaces are crossed, the mathematical pro-
‘perties of the solutions of the characteristic equation and the physical
properties related to the neutral hypersurface qualitatively change. These
phenomena are due to the occurrence of the set of parameters. Analopous
bifurcation surfaces can be obtained in other stability problems too [5].

In this paper the analysis in [3] is pushed further, allowing for
mulfiple 3, for a problem in hydromagnefic stability, The geometrical
inferpretation of the characteristic equation and of the bifureation surface
is given in section 2. In section 3 various forms of the neutral equation
are deduced. A Dbifurcation curve, representing the intersection of the
neutral and bifurcation surfaces, is put into evidence in section 4. The
last section summarizes the resulis concerning the neutral surface.

2. Characteristic hypersurfaces and their associated bifurcation
manifolds. The linear neutral stability of the Couette flow of an electri-
cally condueting fluid subjected to an axial magnetic field is governed
by the following eigenvalue problem [2].

(2.1) {(D?* — a?)? 4 Qa2}2 v = — Ta*(D?* — a?) v, e (— 0.5, 0.5),

Do = (D* — @) v = {(D* — a*)* + Qu} v = D{(D* —
2.2 il i
(2.2) __az)z_f_Q“z}@:() at ¢ = 4-0,5.

where 7' > 0 i3 the Taylor number, > 0 i$ a measure of the magnetic
field strength, & > 0 stands for the wavenumber and ve 0®[— 0.5, 0.5].
v:[— 0.5, 0.5] - R. The smallest eigenvalue 7' — T(e, Q) separvates tho
domain of stability from that of instability. This eigenvalue is the solution
of the neutral cquation obtained by imposing to the general solution of
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(2.1) to satisfy (2.2). The general solution of (2.1) is expressed by using
the solutions r(a, Q, 7') of the corresponding characteristic equation

(2.3) (3 —a®)* 4- 2Qa? (2 — a2)2 L Ta*(2* — a?) -+ Q%a* =0,
which, letting u = 22 — 42, can be written as
(2.3) W'+ 2 Qatu? - Ta?u + Q%d = 0.

The equation (2.3)" represents a hypersurface in the 3-th dimensional
space (Re u, Imp, a, @, 1) which for T T*=1¢ aQVQ (3 V/3)~ has four
sheets while for 7' = 7%, ¢ % 0, @ # 0 it has three sheets. In the three-
dimensional space (a, Q, 7)) of the parameters, the surface 7' = 7%, af
whose points two sheets of the characteristic hyperswrtace are linked,
represents the biturcation (catastrophe) surface ¢ for the set ol the
solution of the equation Flu, a,Q, Ty = pt 4 2Qup® + Ta*y 4+ Q%at = 0.
A qualitative illustration of ¢ may be found in Fig. 1. The sections

kR |

Fig. 1
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through ¢ by planes @ = const, ave straightlines passing through (0,0);
they tend towards the a-axis as @ — 0 aud towards T-axis-as ) — oo
(Fig. 2). Theintersection ¢ n {e == const.}is a cusp which, for a =0, dege-
nerates into the axis 7 = 0 and goes further and further away from the
Q-axis as @ increases (Wig. 3). Finally, the sections of ¢ by planes T =
= const, are hyperbole-like eurves degeunerating into the axis ¢ = 0 and
Q =0 as T —0 and are further and further away from these axis as
T — oo (Fig. 4). The suiface ¢ is defined for ¢, @, 17" > 0, henee it inelu-
des the o and @ axes.

+ ' ) ak
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Fig. 2 Fig. 3 Fig. 4

The bifurcation surface ¢ beging atl the «- and @-axes and covers
the entive quadrant 7 = 0,4 > 0,0 > 0. The points (a, @, T) with
T > T%a,Q, T > 0 bdong to the domain ;¢ boundedby ¢ and the
planes @ = 0,a, 7' > 0 and a = 0,7, @ > 0. The points (a, @, I') with
T = 7% pelong to ¢ while those with 7' <2 7% are situctedin the remain-
der 0,0 of the octant a, @, 1' >9. Fov points of 0,C the characteristic hyper-
surface (2.8) has four distinet sheets formed by complex solutions of
(2.3) natnely pi(a, @ D)y g (4@ T) (== ), pelty Q) ©) and pyla, @7)
(= U,), with Re (u;) < 0 where the bar stands for the complex conjuga-
tion. The imaginary part of p, and p, tends to zevo as («, @, T) — C.
Hence, as (a, @, T) — € two of the above sheets conlesce and they are
formed now by the real solutions of (2.3)" which are also ecqualy; = p,=

= —q VQ]J In this way, for (¢, Q, £)= («*, @*%, T%)e U, the hyper-

’

has three sheets: w, == ~ o™ ||~ « pg = pg(a™, I%, Q%)=

[

= — V@Bl — 20 V2); pa = Wyla®y QF, T%),
The sheebs whose equations weve pg = py(d, @, ) and p, = (e, (%,
T) are continued inside 0,C by two sheets of real solutions of (2.3)".
Hence inside 0,0 the characteristic hypersurface cousists of two sheets
of real solutions of (2.3)", emerged upwards from p; = — a* V@*/3 (im-
plying the bifurcation of the double solution (= py) into two distinet
veal solutions p and p.,), and two sheets of complex conjugate solutions

surface (2.3)

-
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wg = pala, @, T) and py = Fy(a, @, 7). The following limiting sitaalions
speeial analysis deseive : ¢ = 0, Q = 0, T == 90, coiresponding to points
(¢, @, T situated on plancs QO T, aQT avd a0Q respeciively and des-
¢ribing the meaningless physical situation of vanishing wavenumber,
the degenerated case of the absence of the electrical effects and the dege-
perated case of the absence of thermsl ffeet 1espectivdy. I « == 0 and
Q.7 > 0 then ) = 0 is the uniqre sclution of equation (2.3) and it has
the multiplicity 8. Menece all sheets ra, @, 4') and upa, @, 1) coincide
with the hyperplane Re) = 0, Iim » = 0, and, couscquently, the points
(0, @, T) of the plave a =0 whrre @,1' > 0 (including the origin) are
bifurcation points for the chavacteristic hypersurtace (2.3), (2.3)". If

1210,y Q0D g e 1 Y,y oy e V) 2 Ny
= A = Ag = V“ V@ L hg == Jy == Ay = Ag = -—l/(tv V§1 For Q=0,a,1 >0
we have y; =0, w, 4 ,=—La? g, 4 4 Where e 54 =1. Finally for @ =0, T' =0,
@ > 0 it Tollows iy =0, A == Ay = 2y ==
== Ay = Gy Ay = Ag =y = Ag= —@. ADA-

logous geometrical interpretation for the
sheebs (e, @, T)and pa, @, 1') may
be done. Remark also that the planes
¢ =0 (10 >0)and T = 0 (¢, Q> 0)
and the axis 7' =0, @ = 0 consists ol
bifurcation points for the set of solu-
tions of (2.3) and (2.3)". Inside the first
octant, in addition to the multiplicitics
of »; (implicd by those of u;) » may be
also multiple if one of p; is —a® and,
consequently x; = 2y, = 0; Lhis takes
place for («, ¢, T) bcloneing to the sur-
face () detined by 7= (Q -a*}", a, Q >0.
The points of € are biturcation points
for the sheets of (2.3) but not of (2.3)".
In this discussion the form 28— 4a* 28 -
4+ (6a* + 2Qa?)3* + (Ta? — 4Qu* —
— 4a®)32—a* [T — (Q* - 202Q + )] =

= 0 of equation (2.3) was usclul. A .
qualitative graph of bifurcation corres- I
ponding to € is given in Tig. 5 while > (6,Q.T)

the nature of solutions of (2.3)" is ana- sy [\ e

lysed in Appendix 1.

This comment cmphasizes also
the change of mathematical proper-
ties of the solutions of the characteristic equation (2.3) as a bifurca-
tion manifold in the (a, Q, 1" plene is crossed. In fact, the characteristic
equation is (2.3) but the above discussion may be analogously cartied out
for this equation to which a 8-sheeted characteristic hypersurface in the
(Re A, Im 2, 4, @, T)-space corresponds ; for points of O\ 0y, (with «, Q,
T > 0) four or two of these sheets coalesce according to the case a® =
= ]/Q*/S or a* # ]/Q*/S. The characteristic hypersurface for (2.3) has also

Fig. 5
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two coincident sheets for T = (Q 4 a)?, 0 # 3¢> and 8 coineiden
sheets for ¢ —= 0, .

3. The neutral equations. The form of the general solution of equa-
lion (2.1) and, consequently, of the associated secular equation, is qiffa.
rent in different regions of the first oetant a, @, T >0, according g
the multiplicity m; of the roots 2, of the characteristic equation (2:3)
and, therefore, of the roots p; of (2.3)". Since these multiplicities occyyp
for points (a, @, T) situated on the bifurcation manifold B consisting
of the points of €, €}, and the coordinate planes, it follows that the boun-
daries of these regions belong to B. In the sequel the secular equation
will be derived in each such region or portion of B (consisting of Ppointy
enjoying the property that the multiplicities m, remains the same for
all these points). Since the points of B are solutions of the secular equa-
tions extended to the clo-ure of their donain of definiticn, this procedure
enables the selection of the secular points which belong to B. Remark
also that among the secular points there ave the neutral points which
correspond to the minimum physical parameters @ and 7T and therefore

are situated on the cuives which are clese to {he ¢-and  T-axes,.

The sclection of the neutral ewrves, and, generally, the neutral manifolds
proceeds, on the basis of the graphical repicsentation (subsequent to
computations). ' :

Assume first that 3, are mulually distinct. Then the general solu-

tion of (2.1) is expressed as
4

(3.1) v(w) = ¥ (A, cosh ¥ = + B,sin h aa)
i=1

4 | s
such that o(z) = v, () - vy(2) where ve(w) =Y, A, cosh X is the even
1=1 N
4
part of v(w) and wvy(x) = 3 A sin h a2 represents the odd part of the
i=1
solution »(z). This splitting into even and odd part allows a splitting of

problem (2.1), (2.2) into two correspondig problems for w(x) and vy(a).

As the problem for o(x) gives lower stability bounds, this problem is
the only one analysed helow. So, imposing to () the boundary con-
ditions (2.2) we obtain » system of ‘4 linear homogenous algebraic equa-
tions with 4,, 4,, A; and A, as unknowns. The condition to have non-
trivial solutions leads to the following secular equation [2].

Msinh(x /2). .. 2y sinh (2,/2)
preosh(2q/2) ... pycosh (2,/2) =0,a,0, T>0
(ui + Q0*) cosh(2/2) ... (uf + Qa?) cosh (2,/2) (ay @, T)¢ CU Cy
M(pf +Qa?) sinh(4/2) . . . 2y(u-4Qa?) sin h(2,/2)

This equation is of the form g(2(a, Q,1),...,0(a, @, T)) and des-
cribe, in the region {(a, @, T)e € U Cy |a, Q, T > 0} of the (a, @, T)
parameter space, @ part 8. of the complete secular surtace 8, Thus, the

(3.2)

the other see nl

point
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o0 of & (which is to be expected to consist of many curves)
(defermination ultaneously solving (2.3) and (3.2) or, equivalently, (2.3)’
-’_@Eiuqus_ b S;ll:‘-,ﬂs shown in [3]. Generally, it is not necessary to know
iﬁd(323 , ﬂ'l'.essigns A= Aa, @, T). (In the case of problem (2.1), (2.2)
22 'Phc;t (_':fp' ions are given in Appendix 2). ;
gose EX-PI%:S remarl that this procedure to determine the secular sur-
e Le.t_ 11“; }-,.(:_ applied only to these points (a, Q, T') for which 2, are
m(’eslm u‘s for (ay @, T)¢ Cu (. Bquation (3.2) is fundamental. All
ibiniov 1.c. al equations in other regions of the first octant will be
Mtad o (3:2) ¢ they will be appropriate limits of (3.2). Although the
e L'f f ]hysjca.l interest are not situated in the coordinate planes,
D zlﬂul'yléis ig imposed b)_' eunl.iflua-tiop reasons, Implicd by these li-
-mites. Recall that hifurcnt?uu 1}011.1’rs of a seb do not necessary belong to
that set bub generally ave limit points of that-. set. e, N
| Agsume now that some of y; are not Mmple; thlS‘ 13 possllbl.e _[3}
otilyif (@, Q, T) € C where Cis the bifurcation suiface consisting of peints
(0%,0%, %) with % = 16 a*@* Vox3 V3). -

" Inthisease,fora#0,Q#0, pi=py, = — a*V Q¥/3, 150 = ¥ [ Q¥/3(1 £
401 3], 0= [0 —a* V3,0 = Ry, — Va® - ax VOF/3 (1t 20 V2),
dars = — gy + =1, 2, 3,4. These expressions Sh(_)w ‘thayt thp ogught-y
1 = up does not always imply 2y = 2, Indeed, even if py(= p,) 13 real,
2, may be real and positive (and equal to 2,), or 2 = 2, = 0, or, finally,

b

% is imaginary (and distinet from 2, = — X): However, if u, = p, it
follows that the appropriately extended secular equation (3.2)vanishes
because cither A= 2y # 0, 00 )y = 2, = 0, or 2y = — A, and hence the

Iirst two columns in (3.2) are identical. Assume first that equation (3.2)
was extended by supplying the domain of definition of (3.2) with points
of O\ €} (and for « > 0) which eliminates the possibility of vanishing ;.
S0, for every point (a*, 1%, @*) with a* > 0 of the smface ¢\ 0, (3.2)
vanishes ; but this does not means that all peints of ¢\ ¢} belong to the
neutral surface. The reason is that for these points of ¢\ ¢, for which
M == X, (and hence 25 == Xg) the expression of the general solution of (2.1)
(which is no longer (3.1)) reads as

: f'l . (@) = (A; + dgw) cosh na 4 (By + Bya) sinh o +
(3:3) e
el . E (A;cosh ne-t Bysinh ne)

i34

and, -C'OI'I‘L’-Spondineg, its even part cxpresses as v(x) = Ajcoshiae -

i L‘Bé“‘“ﬂh ha + Ageosh dya -+ A4 eoshiye. Then a reasoning, similar
1o that whie), led to (3.2), enables us to express the secular equation

8, in the Yegion {(a, @, T) e O\ 0Oy a > 0, @ > 0} of the parameter space,
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i
in the form

)\]_ Si]l h( 7\1/2)
g cos h (2,/2)
D*=[ (a3 + Q) cosh(ny/2)

2w -+ Q) sinhy( 2/2)

sinh(x,/2) - (24/2) cosh(2,/2) |

22 cosh{)/2) - (11/2) sinh(),/2)

Dap 08 h(0/2)+ [+ Qa)/2] sinh (3y/2)

(Hdon 0 -+ Qa*sinh(0/2) + Ol +
+@a*)/2) cosh (3,/2)

(3.4)

AaSinh( 2,/2) Ay 8Inh(),/2) |

s cosh(2,/2) g COSh(2,/2) =0,a0 >0,
(W Qurleosh0af2)  (uek-Qu) cosh0af2) | 90, (4, 0, Ty
Ag(p3-- Qa?) Sinh(2,/2) M(pi+-Qa?) sinh( 2/2) € O\,

Formally, this cquation may be obtained from (3.2) 1 i

'mally ati ned f 3.2) by simple
C}IHGI'O,}]_tI:?LtIOH of thq second column and subsequently 1§eplf)bcir?gf Ay 1by
75 this is nat;uml fince (3.3) i3 obtained from (3.1) in the sanie way.
Expression (3.3) may be deduced also by Writing (3.1) as (3.1)

(@) = A, (cosh M@ — coshha) - (43 - 4;) cosh hoa -
(3.1) -+ By (sinh nz — sinh do®) - (B, 4~ By) sinh ho -
+ % (4;cosh rae + B;sinh 2 2)
i=3,4

or, equivalently, as

Y COS M@ — COS A
@) = Bjp —— L1 D00 AT + A7 cos hage -

(A — Ay) @
(3.1)” Sinh Mz — sinh A2
G A —— B MY e N, e
(A — hg) @ 5 Pl

+ 3 (4,cosh yae -+ By sin b 2 )

i=3,4 =

where Af = Ay — Ay By = Ay - Ay Bi = By(n — A) and Af =
= By + B; and bhen Ieiting 2, to tend to M. Assuming that Af, 42, B
Témain constant, in the limit (3.1)" turns to (3.3) (of course (l’rupi;ing%
the primes). Similarly if iy (8.2) the first column is substracted Irom the
inc;}ndi 113;11{3 .L'(-sul'tm]i column iy divideq by (M—2%,)/2 and then Ay 18 let
0 tend to 2y, one obtain (3.4). The two vays of aining (3.3) ang .
are equivalent hecause i VA7 of obtaining (3.3) ang 4

: COS M@ — COSAu g
ik 1% — tm)gf:: o “Q coslz_a;
:?.,—ﬁ\l (AJ_ = }\2J o a)\z A =2,
({.e. when all 3; are complex) equation (3.2) is defined by a real function, '

and show that for T < 7%
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for T > 7% this is an imaginary function while for 7' = 7% {he men-
{ioned function is real or Imaginary according to whether N 18 a purely
Imaginary or real number.

A thivd method to derive (3.4) from (3.2) is bwed on the asymp-
totic expansiony of y, , and %q,2 With 1espect to the asymptotic sequence
{1, ¢, ...} for € 50. Hae e Is a small (ie. je]is small) complex
number of the oider of magnitude of the A — A, whaie ® indicates
the values on the surface 7 — T*. Thus for & —» 0, pg = ug + 2e)f,

~
R B N e A 5% € A %
M=ol 4 2enF £ ot = e (1 Aot )r A oAe L
ur + g*
o =tz - 2N, N = A LT ... it A is real and %, = — 4T if
A’ is imaginary. Then, for AN eR (ie. for points (a, @) with o > VQ/S)
taking into account that sinh (@ - €/2) ~ sinh @ -+ ecoshw -+ (e*/21])

sinha -+ ...., the first column in (3.2) 18 expressed as

e Gnn N (e Ny
A - sinh — 4- ¢ ginh —~ + 2L eogh 2L o
' 2 2 2 2

3 ¥ 2 0 T
o E alr " 53 . AN
wi eosh % - e 23 cosh =L 4 Elgipp AL Y,
e I's 2 D 2

2 2

. o ol N 2 Qa2 . ¥
(p 2+ Qa*) cosh é—’- . (4:)-\1" us cosh -gl B e Ml ; Q> sinh —2—1) o g

. 7\* %Y Ky . )\* 7\* #
M(p1* - Qa?) sinh 7 - e [(@%Qcﬂ + 42%ul)sin h;l+ j— ( P A+

*

+ Qa?) cosh Z;) + ...

while the second column is obtained from the first one replacing ¢ by .
These expressions show that the leading term of the asymptotic expan-
sion of (3.2) with respect to the sequence {1, €, €,...} for ¢ — 0 is just
(3.4) (obtained, equivalently, substracting the first column from The
second, dividing the result by € — & and letting & — 0), i.e. D ~ (€ — £)
D¥+-... where D=0 and D*—=0 represent equations (3.2) and (3.4) res-
pectively. Similarly, if 2} is imaginary, it follows that D~ —(e +€)D* |- ...
such that the first approximation leads also to (3.4).

The second approach points out that (3.4) was obtained from
(3.2) by operations invariating the solutions of (3.2) followed by a
passage to the limit. Hence (3.4) iy a limit of (3.2) as 2, — 2. In this

case T — T* such that, replacing 7% by its expression, equation (3.4)
contains only two unknowns: g and ¢. Denote by S, the curve (or
curves) consisting of points («, Q), solutions of (3.4), and let 8, be the
eurve (or eurves) consisting of points (@, @, T*) where (a, )< 8,,. Hence
8y is the orthogonal projection of 8, on the (a, @) plane. The second
approach shows that 8, is a bound of the secular surface & consisting
of limit points of some or all curves of & and realizes extrema of these
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eurves. (This extremum property is realised only for curves of 8, and
not of the whole secular smface 8).8, is itself nentral. As §, is a neutral
curve belonging to O\ €, it means that it is a bifurcation curve of AN
and & and, hence, of O\ ¢/, and B, where FE is defined as the surface
consisting of points («, Q, T) of the first octant satistying equation (3.2).

If the domain of definition of (3.4) is extended to the projection of
Conthe (a, Q) plane for ¢,Q > 0, then the secular curve 8, will correspond
only to a part of the solutions of this extended equation. Indeed as the
point (a, ) crosses the curve ¢ — ]/Q/S, from imaginary 1, becomes real
such that D* changes from real to imaginary and (3.4) holds and conge-
quently the curve « = |/Q/3 is also a solution curve of (3.4). However,
not all points of the curve ¢ = VQ/3 (ie. ¢ n 0y) with @, @ > 0 are secu-
lar. To separate them we take into account that, in this case, p; = p, =
=0 N =g = = A =0, Q@ =3 T =164" 237 =1a V2 -+ 2iV§,
s = +a ]/2 — 2i V§ such that the corresponding general solution of
(2.1), (2.2) is

4
(3.5) v=Ay'1 4 Birao Ay o+ B, z? + %) (dicosh 2 +

1=3
+ Bsinh 2z)
and has even parg
(3.6) - Ve = Ay + Ay @* + Ay cosh rgw L Ay cosh ya

such that, denoting by P(¢ n Cy) the projection of (C n C,) on the qa, Q
plane, the corresponding secular equation is expressed as

0 1 AgSinh (2,/2) Msinh (2,/2)
(3.7) =&’ 2—a?/4 ug cosh (24/2) | pgcosh (24/2) wrg
da'  a'—da? (3 4 Qa*)eosh (2g/2) (42 - Qalcosh (ha/2) 4
0 4ot 25(pd -+ Qa?) sinh (24/2) M(pd + Qa?) sinh (3,/2)

for (a, Q)GP(O n )y a @ >0.

‘ This equation may be also deduced from (3.4) by the above men-
tloned approaches. Hence (3.7) may be derived from (3.2) by differen-
Liati_niglm second column two times and then letting 7 — 7* and
@ ]/Q/S. In Appendix 3 it is proved that (in the domain ¢ n Oy a, @>0)
16 has no solution and, consequently, there is no secular point in that
(domain. Henee none of the points of the curve ¢ — VQ-/_B is secular, In
exchange, it ¢ is allowed to take the value g — 0 (which implies also
Q = 0) then ¢ = 0 is the solution of the corresponding extended equa-
tion. Since (a, Q) = (0,0) is the common solution of (3.4) extended to
P(ON\ ;) v {0,0} and of (3.7) extended to P(0'n ¢,) it follows that this
point is a bifurcation point for the set of solutions of (3.4) extended to
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O\ 0y U {0, 0}. Indeed, as is it shown by computations, it is a limit
point for all the solution curves of (3.4) and, at the same time, it belongs
to the curve a = VQ/S (defined for a,@ > 0) (tig. 6).

Let us see now which among points (0, @, 7), Q, T >0 are secular.
In this case 2 =0,7=1,8, u; =0, 1 = 1,4 such that the general
solution of (2.1) may be writ-
en  as

12 3 4 5 67 8 9 10

8
(3.8) 0=y A
t=1

whose even part is
(3-9) Q)g:.A] +A2af/‘2+A4af)4+A6m6, "-.,un..'...

which leads to the secular eqna-
tion whose first column has 1
only vanishing entries and con-
sequently all points (0, Q, 7) Fig. 6
with @,7 > 0 are secular.,
These points satisfy the appropriately extended equation (3.2) and,
consequently, are bifurcation points for .

For points (¢, 0, T), a, 7> 0 T # a* in the plane Q@ =0 we
vegg =4 Va2 — /' Ta* ¢ where ¢3=1 and the neu-
tral eqnation (3.2) must be considered.

Consider now the points (a, @, TYeCy a >0 a# V()E, in this
case the general solution of (2.1), (2.2) s »v= A, + Bjo +

[
24%
3 *
49

5

have 2,y =4 a, 2y, .

4 ) AT
+ Y, A{cosh-;—z -+ Bisinh%’; and has the even part ¢, = A,
1 =2 P

4 .
+ ¥ Aicosh%. This v, may be obtained from the even part of
=22

(8.1) letting 2, =0 and consequently the corresponding neutral
equation is obtained from (3.2) for A = 0. On the basis of _com-.
putations we conjecture that no point (0, @, T)e )y a >0,a%# VQ/S is
secular, ' o .

Last, let us take (¢, @ T)e €}, a = /Q/3 > 0. In this case (2.3)
hecomes equation

(2.3) 28— dg? 28 |- 1242204 = 0,

whose solutions are A, = Ag= ks = 2g = 0,

Mg = a2 Y1 +iV2, Mg=+af2 [T 1z This case, leading to
(3.7), was examined above and led to the conclusion that no point

(@, @, T)e O, with a = ]/Q/S > 0 i8 neutral.

It follows that the secular manifold 8 consists of : points (a, @, T) ¢
£C U Cha,Q, T > 0satisfying (3.2) and situated on 8;; points (a, Q, T)e
€ ONC a, @ 7> 0, T = T* (# 16a%) where (a, Q) satisfy (3.4) (and

3—¢. 1577
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nding *) are limit points of (3.2) for 7' — TI™*) and are
orrespondingly (a, @, T*) are limit poin _ e e iy
:itnatgd on §, ;y&ll,thtz points of the lzla;nf, 11,1: 0 l(ilxilug()hng OQ ];Ed %‘ ::}xit 8
» = olC B ] o b » plane AN} ! ]
and the origin (0, 0, 0)); all the points of the ‘plane @ = s
istying (3. i sjome of the ints are bhifurcation points for #
satistying (3.2). Since some of these poin bifureston 08 | /
and 80 me ((Jf the projection ?n the (;:a:-(,SQZ))plfcb(::,{le(.geu4 t; llarlllr:]; (i}détlf)ﬁrf’ﬁ?;tsd%;
irect numerical solution of (3.2) and (3. ay be pe
(3.4) the divect numerical solution o 3:2) and|(3:4)may be pertqrmad by
numerical techniques appropriate to bifurcatio . o &
i i i if fi : is solved. Some of our results, based o
tion is obtained if first (3.4) is s0 & R e o
1 (3.4), are given in Fig. 7; they agree perfect Y iwikh those
([36'2)1?1111%%5?( t.)171&f; uf@ suiface T = f?” provides a bo_unrl f(_}l__. the neutral
snil-;’a-b’e; '*'-ﬂ The nentral cvrves were plotted by continuous lines.
iace x|, Cilllc -

T

7000 L
@000 |
Sooo
4000 |
3000 |
2000}
dooo |

B0
¢ooo
4000 }

2000 ,{

aof

Fig. 7a and b
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APPENDICES

1. Properties of the solutions of equation (2.3)'. All the real soln-
tions p of (2.3)" are negative since from (2.3)" it follows y = — (w2
+Qa?)? T a2, < 0. Tt follows that (2.3)" cannot have only real solutions
becaunse their sum (i.e. the coefficient of w?in (2.3))) is zelo.

For T > T* equation (2.3)" has no real solutions. Indced, assume
that the solution of (2.3)"is p= ]/Qaz (# -+ 1y), 2,y € R (hence ¥ =0 cor-
respond to real solutions) such that from (2.3) we have

2 2 2
(A1) A s o)
a2y,
(@ — y2 - 1) — 40224 dan? (0% — o2 1
=-«aQV§{ [( y* + 1) 2._/]-l- y° ( y+1)4
@+ y?
+i oty (2 —y® 4+ 1) — y[(a® — 42 4 12 — 4%y}
wZ + .1/2
Since T' i3 a real numbar it follows that 4ty (o® — y* 4 1) — y[(a? —
— 4>+ 1)? — 42%2] = 0 which implies either y = 0 or

(A.2) do(0® — y* 4- 1) — [(2* — 9% + 1) — 42%?] =0
where y = 0 ory # 0. Taking into acount (A.2)in (A.1) we obtain
(A.1) T=—4aQ)Q #(@? — y* 4 1),

As T > 0 it follows that #(2* —y* + 1) <0 and, consequently, from
(A.2) we have the equality

(A.2) 20V@ F1 = — (a2 — g2 + 1),

valid for y = 0 as well as for y # 0. If (A.2) is accounted for in (A.1)
we get

(A.1)” T =8aQVQ % F1. i
If, now, we take y = 0 in (A.1) we obtain
(A1) T=4QVQ (@ + 1 |2].

This expression is valid for every real solution v = }/Qa? of (2.8)" while
the only real solution of (2.3)" involved in (A.2) and, consequently,
In (A1) ig b =2 )Qa* with z = — ]/LE

The solutions of (2.3)" fall into three cases : (a) two solutions are
real and distinet bre = VQa? P, <0 and two are complex conjugate
3.4 =V Qa? (cos 041 sin 6). Wiiting 8 =4 4- @,, P — @, the Viete
telations are expressed as: 8 + 2r cos 6 =0, P + 7 4 8 27 cos0 =

=2, P2 cos 0+ 8 = — 2(aQ V@)Y, Prt —1.The first of these
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four cquations implies cos 6 > 0, the third shows that P < r2; solving

1
B

the cquations it follows § = (1—#?)/r, P=r"% and hence ) Ee=as e
0

+ Y VF‘TF—"B r2 — 3. As @, are real it is necessary that Pt — 992 —3>0
27

therefore 72 > 3. Bubt 7% = a2 + 93 = a5 + yi where (25, y5) and (&,
ya) satisfy (A.2)". &

Then taking into account (A.2)’ the condition #2>3 implies wy>1 VE
such that (A.1)” gives T > 7T%. Similar reasonings show that: (b) for
T < 7% equation (2.3)" has four complex conjugate while for ()7 = I
this equation has two real and equal solutions, the other two solutions
being complex conjugate. In the case (b) »; and w, will stand for the
complex conjugate numbers pu;,/JQ@a? while in the case (c) they will
be equal real numbers (u,/) Qe = u,/V Qa?).

The above analysis could be carried out direetly on the explicit
form of the solution of (2.3)', obtained by reducing the solution g of
this fourth degree equation w=au. V@ to the solution of two second degree
equations

(A.3) w4+ 0,5 Aw + = — 16 (3 Y34) 7'« = 0,

where « = TT*, A = 4 2 Vﬁ 2z — 1 and y is any real solution of
the third degree equation

(A4) : 23— — b1 —32 (27)71 ® = 0.
. . (16Y, . N
For T= T%i.e. a<1 the discriminant of (A.4) 1s (55)2 a?(a? — 1)<
: . . 1
< 0 lhence the eguation has three veal solutions Z; = — + % - 7, Z, =
3

3

OJ]H

3 3
T l/"c,'z_':_i and v = V.lz_? VO‘2 ‘ 0.5 —olo? —1-

2. Properties of solutions of (2.3). In the paper we used the rela-
tions Ay = - Vg - 62 Mo = £ Vg + 0% hor = + Vo F 63 Ms==%
= & Vua 4 @* where A; ave the solutions of the characteristic equa-
tion (2.3). All multiplicities of p, caily correspondingly over the
multiplicity of ;. Additional multiplicity of A, arise at those points (a,
Q, T) for which 2; = 0. This takes place if one among p, say yg, 18
real.and namely u, = -— ¢? which implies 7 = (@ - a?)?. The surface

16 3.
- eu 4 €%, Zy = —13— 4 e?u 4 ev where €% =1, 4 = Vﬁ Va2 — 0.5+ _
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C;={a, @, T)eR® | T = (@ + a®)? a, @ > 0} intersects the surface
T = T* along a curve CY whose projection on the (@, Q) plane is the
parabola a =)/Q/3, a,Q > 0. The points of ¢,\ OF are of bifurcation for
the solutions of (2.3), two such sheets coincide and are »; = 25 = 0.
In fig. A2.1 we represented the intersection of the plane @ = constant
with the surface C)( i.e. the curve T = (@ -4 ¢2)?) and with the surface
¢ (i.e. the curve T = T*). The lagt two curves intersect at the point

2= ()JQ/3, 16Q%/9). Indecd (Q + a?)2 = 3——11/% Q VQa implies b4 6b* —
= 166+ 9 == 0 where b ==~ ]/ /3, therefore i
(b — 1)% (b* 4 2b |- 9)=0 i.c. b; 5 = 1, hence
t,,,=VQJ3. The point 2 coincides with the
interscetion of the curve Of with the plancs

@) = constant. Our numerical calculations
were carried out for various fixed values of

@ ; that is why we took into account that s
in planes @ = constant the nature of 2, at 9
a point (a, @,7) depends on the position of [
that point withrespect to the curves T=(Q+ Q2+/
+ a?)? and 1" = "% For instance below the
straightline 7 = 7* all 3, are complex while
above T = T* four among »; are complex
and four ale cither real or two of them real Fig. A2.1

and two limaginary. As the curve 7' = (Q +

@*)? is crossed the two 2, which on t{he different sides of that
curve wele real and vespectively imaginary vanish.

3. Equation (3.7.). By simple algebra ecquation (3.7) becomes
(A3.1) &4 t% =312 @ (V‘Q tay -+ fa), where £, = )y lanh(ay/2) =
= I3y == - 1y, Writing 23 = w -+ 40 where u =@ l/ V3 4+ 1,0
= av |3 (A3.1) reads (A3.2) (2 cosh v — cosv) — V!B)_(V§M - v)
sinhu = V3 (w — 2v) sinv. Since v = (/3 — 1) w2, h = V3 (Vo u +
-+ v) sinhu — (V2 coshw — cosv) is a function of % alone; we have h(0) =

l

oAk Y ewwngey Y3 L 1415 rs
=0, e I(w) + ___ﬁ w coshu where {(u) = _-T/-z,—m sinhw— () 3— 1)
14 Vs 3 1)2 K 5
sin v, But,£1£ = _—-}—:l[—%-cosh u—ﬂ/—g—-—_icos v > L _*_._l.! 3 — (V{; —,41)2 =
duw V2 V2 V2 €

3/3—3 . A
= “W" > 0 hence ! increases from {(0) == 0 for w > 0, therefore { = 0.

dh
Then:i_@_o > 0 for any u >0 and, because h(0) = 0, it follows that A(u) >

>0 for u > 0. For we(0,u*) where u*—l-/3—vg—l— =¥ =g (and con-
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sequently, u* ~ 6) we have (u —V§ p)sin v = (2 — /3w sin v > 0 and
(A3.2) has no solution becuse the left-hand side ( —h(u)) is negative while
the right-hand side is positive. On the other hand for w > 2 the func:

: g g i = = 5 ;
tion g{u) == —)V-%—V—u. sinhw — ]/2 coshu — l/2 — (2 V3 — 3)u is strictly
1 Lo Jegen, +V3 2N
positive becausegg == ___:]/_g sinhw - 3_;‘./3_“ ceshu + 3 — 2 i/ 3>10
du V2 /2

and ¢(2) > 0. Since (A3.2) expresses, equivalently, in the form

flu) = %V—Swl sinh w — /2 [COSh v T (nggl u)]+

+V32 — V3ju sin (l/_RVE 1 H) e )

and f(u) > g(u) > 0 if follows that (A3.2) has no solutin for w > <.
Consequently (A3.1) has no solution for w > 0.

REFERENCES

1. Georgescu, A, Variafional formulation of some nonselfadjoint problems occuring i:
Bénard instability theory I, INCREST, Bucharest, Preprint Series in Mathematics, nrc.
35/1977.

2. Georgescu, A., Characteristic equalions for some eigenvalue problems in hydromagnet::
stability theory, Mathematica, 24 (47) (1982) 1—2, 31—41.

3. Georgescu, A, Cardos, V. Neulral stabilily curves for a thermal conveclio
problem, Acta Mechaunica, 37 (1980), 165—168.

4. Georgescu, A., Calastrophe surfaces bounding the domain of linear hydromagneiix
stability, Central Institute of Physics, National Institute for Scientific and Technical Crea
tion, FT-203-1981.

5. CGollatz, L., Remark on bifurcation problems with several parameters, LLNM 846, Springer,
Berlin, 1981, 82—87.

6. Chandrasekhar, S., The stabilily of viscous flow between rolaling cylinders in th:
presence of a magnelic field, Proc. Roy. Soc. A 216 (1953), 293 —309.

Received 10.V. 1989 Institulal Politehnic Bucuregti
Faculiatea T.C, M,
Bucuresti, Romdnia



