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Abstract. In this paper the piecewisce linear funclion in many variables is obtained by the
discrete [; approximation using the linear or the linear mixed integer programming. The cen-
sared discrete linear [; approximation can be exlended using given results.

1, Introduection. Congider a sample of statistical data for » random
variables which must not be independeunt, and one dependent randoni
variable. Our aim is to obtain a piecewise linear function for which the
sum of absolute deviations is minimal. The piecewise linear function is
important in the optimization of the business process [2]. For i-th ele-
ment of the sample the deviation is defined as the ditference bhetween
the observed value of the dependent variable ¢, and the function value
flx;). Hexe o, € R, 1s a vector whose components are observed values of
»n random variables in the i-th elemeut of the sample and f: B* — R i3
a piecewise linear function. This problem can be expressed in the form

i
(1.1) mirimize %) [y, — f ()]

i=1
The function f contains unknown parameters which must be estimated.
The number of observations wm must be greater than the numbei of
unkunown parameters.

The absolute value function can be expressed using zero-one varia-
bles subject to additional constraints [2]. The function

glx) = ly — f(x)

can be teplaced in the programming problem by

g(@) =r s
subject to nonnegative variables » and s, suitable constant ¢ and
(1.2) y —fle) =r —s
(1.3) 7 < o
(1.4) s el —u)

(1.5) w =0 or 1.
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If the absolute value function arises in the objective function only and
this function is minimized, (1.3) — (1.5) can be omitted. Therefore instead
of (1.1) we obtain

m
(1.6) minimize ¥ (r; - s,
i=1
subject to nonnegative variables #; and s, and
(1.7) Y — f(@)) = 7, — 8 =1, ..,m

The piecewise linear function of few variables can be expressed in
different forms. We will take the form [1]

(1.8) J(@) = max(g,(2), ¢5(2);. . ., gala))
which can be used also in case where many variables arise. If g, ate

linear functions, f(x)is a convex piecewise linear function. Similarly the
function.

f(x) = min (¢,(z), g,()y. .., Gy (@)

ig a concave piecewise linear functioun if g, are linear functions. The gene-
ral piecewise linear function can be expressed in the form (1.8), where

(1.9) (@) = min(ga(w), gip(@)y. . sgu;()) € =1,...,h
and ¢;: R" - B are linear functions.

2. Estimation of Parameters by the Mixed Integer Model. THEOREM.
If g, and g, are bounded functions, thew the function

f(x) = max (g,(x), g,(a))
cun be replaced by
(2.1) J@) = gafe) + @

subject to (1.5), nonnegative variables p and q and additional constrainis

(2.2) 9u(@) — gy(w) = q — p
(2.3) P <ou
(2.4) q < 6(1 — u)

w hwere ¢ is a sutlable positive constant.
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Proof. 1t
(2.5) N(@) — gy(w) >0
then from (2.2) it follows ¢ > 0, since p is nonnegative. Therefore from
(2.4) and (1.5) it follows « = 0. From (2.3) therefore it follows P o=

Sinee g, and g, are bounded functions and ¢ is a chosen constant, from
(2,2) it follows

n(w) — gy(x) = ¢
Then from (2.1) it follows
fla) = gi(a)

[

and the theorem is proved subject to (2.5). Similarly in case

$lz) — gola) <0
it follows 4 = 1, ¢ = 0 and
fla) = gy()
and the theorem iy proved also in this cage. It

g (@) = gy(x),
from (2.2) — (2.4) and (1.5) it follows p = ¢ = 0, since p and ¢ are
nonnegative. Therefore the theorem holds also in this case. So the theo-
rem is proved.
In similar way the function

(@) = min (g,(2), g4(2))

can be replaced. If
glx) = max (g,(x), gip(w))

or

gi(@) = min (g,,(2), ¢ix(w)) AT
for ¢ = 1,2, then first g,(x) and g,(2) must be transtormed. Using this

result the function (1.8) subject to (1.9) can be transformned.
Consider the function

( 2.6) f(@) = max (max (9,(2),9,(x)), max (g5(x), g5(w))).
Using (2.1) — (2.4) we obtain

(2.7) max (g,(2), gx(2))= gy(@) + ¢4

(2.8) 9i(®) — go(2) = q, — py

(2.9) D, < ou
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(2.10) g, < ce{t — u)

(2.11) max (gola), ga(@) = ga(@) + @

(2.12) gs(#) — ga(®) = Q3 — D2

(2.13) Py € €

(2.14) gy < o(l — )

where p; and ¢, are nonnegative, w and v are zero-one variables and ¢
is a suitable constant. Considering (2.7), (2.11), (2.6) and the given
theorem we obtain

(2.15) J(x) = gsl@) -+ 45 + €

subject to nonnegative variables p; and ¢;, zero-one varviables w, v and
w, (2.8) — (2.10), (1.12) — (2.14) and

(2.16) gol@) + ¢ — 9o(@) — ¢a=10y — Ds
(2.17) Py < Cw
(2.18) g; < c(l — w)
Consider the problem (1.1) subject to (2.6). Using (1.6), (1.7) and

this result in can be written in the form
m

(2.19) minimize Y5 (7 - 8:)
=1

subject to nonnegative variables p;, ¢, r; and §;, zero-one variables
vy and. w;, suitable constant ¢ and

(2.20) gal @) - Qg 1 Qs + 10— S0 = Vs
(2.21) Gi(e) — golad) = qu — P
(2.22) P < 0U;

(2.23) gy < oll — uy)

(2.24) gs(@e) ~— gul@:) = Qin — Paz
(2.25) Vig S CV;

(2.26) i < O(1 — ;)

(2.27) go(@) + @ — 9s{®) — iz = Gis — Pao
(2.28) P S CW;s

(2.29) Gz < o(l — wy)

for i = 1,...,m. If gy,. . .,gs are linear functions, then (2.19) - (2.29) 1s &
linear mixed integer programming problem with zero-one variables u,,
v, and w,, nonnegative variables ¢y, py, 7y and sy and unbounded para-

meters of linear functions.
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3. Estimation of Parameters hy the Lincar Model. The linear
mixed integer programming problem (2.19) — (2.29) can have a lot of
variables and constraints. If the sample has 100 elements and the
function has four linear pieces in the programming problem arise 300
zero-one variables, 800 nonnegative vatiables and 1000 constraints. In
spite of the development of the linear mixed integer programming and
the corresponding computational technics[4] such a programming problem
can cause difficulties. Therefore it is reasonable to approximate this
model by a model, which can be simply solved. ‘

The problem (2.19) subject to (2.20) — (2.29) can be approximated

by the linear programming problem. Consider thelinear function h: R, — R.
Tt

(3.1) Aoy € Ma) < dy

where eonstants d, satisfy the condition

dk—l’_ < d;‘ fﬁr k o l,. ala ,4:
then

(3.2) max (max (g(@), ga(@:))y max (ga(2), gal@0)) = gul @)

Donstants d; can be determined so that for any element of the sample for
which x; satisfies the condition (3.1) an index L exists, and parameters
of linear functions g, ean be determined so that (3.2) is true.

If @, satisfies (3.1) for & = 1, then from (3.2) it follows

gilas) = golad)

Therefore from (2.7) — (2.10) and ¢, > 0 it follows py; =0 and we
can talke u; = 0. Since

max (91(';(’;), ggfmi)) z max (93(%): gd('l'.i))S

from (2.7), (2.11), (2.16) — (2.18) and ¢;; > 0 it follows py = 0 and we
can take w, = 0. Since (2.6) is a convex function the zero-one variable
v, can be determined as well. If there exists at least one element-of the
sample, which satisfies the condition (3.1) for & = 4, then any element,
which satisfies the condition (3.1) for k < 4, gatisfies the condition

fa(®s) = Gal@y).

Therefore we obtain p,; = 0 and we can take v; = 0. Instead of (2.21) —
— (2.29) in owr case we obtain

(3.3) §i{@) — ol @) =g
gs(2) — ga(2) = Qg
(3.4) 9s(2) + G — 9 @) — Qg = Qia-

Using (3.4) ard (3.3) from (2.20) it follows
| (@) 4+ 1o — 8 =Y
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It «, satisfies (3.1) for &k == 2, then u, =1 and v, = w;= 0. In this
case we obtain following constraints
gs{@) 4= 16 — i = Y
gl — golo) <0
gs(z;) — Ja(@:) = Qs
gols) — 9a(@e) — Qia = Qi3
It @, satisfies (3.1) for ¥ = 3, then we obtain
i) + 10 — 8 =Y,
gl(wi)l’_ Jolay) <0
93(@;) — Galw) = Qo
o) ~— @) — Qg <0 I
I w; satisfies (3.1) for & = 4, we obtain .
go(@g) + 10 — $: = U
“gulzy) — golw) <0
go(®:) — guly) <O
gol ) — gulx) <0
For this problem a matrix generator can be useful.

The function (2.6) can be extended to more linear pieccs and to

concave piecewise linear functions. Since the convexity. ig used for the
determination of zero-one variables; the extension of fhis method to
functions (1.8) subject to (1.9) can not be used.” But the deteimination
of zero-one variables is simple also in this case. If
f(@) = max (min (g,(), gu(2)), min (ga(); gal@)))s

instead of (3.1) we can take :

(3.5) hy(@:) < d,
(3.6) hz(ww) < dy

where A, and h, are different linear functions. If #; satisfies the condition
(3.5), then we can take

min (a,(@), go(@:)) = i)
and

min (gs(@:), gal@:)) = (@)
If 2, does not satisfy (3.5), then we take

min (g(x,), g.(2)) = g5(:)

min (gs(@;), ga(a:)) = 94(;)

Similarly the condition (3.6) can be used for the determination of the
maximum.
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4. Censored linear I, approximation; Consider the problem {3], [5]
. . . L ,
(4.1) minimize ¥ |y;— max (2, @ 2y)]
=1

where 2, € R, y; € I and # € R are observed and ¢ € R" must be estimat-
ed. Using (1.6), (1.7) and (2.1) — (2.4), this problem can be written in
the form
n
minimize E (r; + 8y)

i=1
subject to nonnegative vaxziables ry, s, p; and ¢, zero-one variables 1, and
Yo — a'mi — ;= &
2y — ' Xy =y — Py
P s CUy
q; < c(l — uy)

for 4 = 1,...,m. Now we have a mixed integer programming problem
with 4m constraints, 4m nonnegative variables, m zero-one variables and
2 unbounded components of the veetor «.

This result can be useful although an algorithm for this problem
exists [5]. Since computer programs for the linear mixed integer pro-
gramming are available we can use them. Therefore special computer
programs are not needed.

Using given results problem (4.1) can be extended if we take

m
minimize Y] iy, — max (z;, min (¢ @4 80) |

i=1

where ¢, € R is obgerved as well. This problem can be used in statistics in
a similar way as problem (4.1). Instead of the linear function a'z we
can take the piccewise linear function.
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