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Abstract. A certain characterization of convex funclions of order n on an interval I which
are (11 + 1) times differentiable on I, by lhe use of a Py-simple functional L, is proved to he
in connection with a certain hehaviour of the functional I with respect to the strictly quasi-
convex funclions of order n — 1. In context it is also proved that the necessary and sufficient
condition for an n times continnously diflerentiable real function [ be striclly quasiconvex of
order n(nz0) on I is that { be convex or concave of order n on I, or there exist e¢arl
sich that f be concave of order n on I (— o0, ¢] and convex of order n on I [e, + ©o).

1. Introduetion. According to a result of H. T. Wang [8] if a
function f:(0,1) — R is convex of the first order (i.e., strietly convex)
on (0,1) then the Fourier coetficient

I3

(1.1) Cowlf; st) =200 —§)7? Sf(y) cos __.Znt(?/ — $) dy
— s

S

is positive for any subinterval [s, ¢], s < ¢, of (0,1). Conversely, if the
function f is twice differentiable on (0,1) and a(f; 8,8) > 0 for all s, te
€(0,1), s <1, then f is convex of the first order on (0,1).

In the paper [7] we have observed that this characterization of the
twice differentiable strictly convex functions may be done in terms of a
£y-simple functional L, namely 7 :0[0,2x] - R,

(1.2) I{f) = g f(x) cos wdw, fe O[0,2x].

Indeed, for this functional one has
(1.3) LD () = = ay(f 5 3,1)

for any [s, ] < (0,1), where D,, stands for the operater from COfs,i]
into Cla, b],
(1.4) Do f) (@) = flalt — s)/(b — a) + (bs — at)/(b — a)),

zela, b], feCls, t].
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Thus, the positivity of the Fourier coefficient (1.1) means
(1.5) L(D; (1)) > 0.
More generally, we have proved in [7] the following theorem.

Tymorey 1 ([7]). Let L : Cla, b] - R be o Pj-simple functional.
The following statements are equivalent : .
1°. The necessary and sufficient condition that a twice differentiable
real fumetion f defined on an interval T be convex of the first ovder ow I
is that inequality (1.5) hold for all s,el, s <t.
9°. For every real function f which 1s twice differentiable, strictly
quasiconver and nowmonotone omn SOME interval [s, t], there exist s and
i, s <8 <t <1, such that
(1.6) L(-Ds".t'(f)) = 0.
As an application, other than the above result of H. T. Wang, we
have mentioned the following corollary.
CoROILARY 1 ([7]). In order that a twice differentiable real function f
defined on an interval T be convex of the first order-on I 1 18 neCessary
and sufficient thal

1
(1.7) gw(a:)Pg“'m(m)_f(t(l + 2)/2 + s(1 — x)[2)da > 0,
-1
for all, s, tel, s <l
Tere we have denoted by w(x) the funetion (1L — a)* (1 -+ @)®,
z e (—1,1), where o > — 1, > — 1 and by P§® the Jacobl polynomial
ol second degree. 1n this case, the £y gitrple functional which intervenes is

(1.8) IL(f) = Sw(oy)P‘Z""G’(w)f_(x) de, feC[—1,1].

1

This paper is concerned with the extension of Theorem 1 to the
case of convex funchions of order = and P,-simple functionals (n > 1).

9. Preliminaries. We fivst recall that = real function f defined in I
ig gaid to be convex, ROACONCUVE, polymoriial, woncoRves, coONCALe of order
n on I if the inequality
(2.1) (@1, 2. - Waagi 1> 29 =) S <0

is satistied for every system of » 4 2 disbinet points g, @y« « yTprg € L.
All these Tunetions are said to be of order % on I.

Throughout we shall assume that the points @y,@g. .« Tpry iDL &
divided difference [@;, Tay. « 3 Tnta f] arve distinet and @y <@g < ... < Fnto
Tor n = 0 we have the monotone functions : increasing, nondecreas-

ing, constant, noninereasing and decreasing, respec'ti‘vely.
linear, noneonvex and

Tor # = 1 we have the eonvex, nonconeave,
concave functions, respectively.

holds for 'every system of n + 3 points in iz, < @, < ..
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Among the properties of the divi i

1l n § he divided differences the followi

4 i if _ 12 U (L C PIICER The WINEG 1mes

\ 11119{1]1‘%91 (_mrdue to T'. Popovieiu (see [2]) will be uscd f:requeut-lyg- e
" ¢ f be a real funection defined on the points .

wy < @y .. << @y wWhere mo> n - 2. Then

; . £ —n
2.9 W i i S
(2.2) [@iy @igye oo Wiy 14 ] = Ay, Zia1se+ oy Tiens [
J-=f1

where A4; are independent of f ey

- ol . ¥ 3 e 0{ > el o+ | "

L 1 j’ ‘fl-“ /Ulj_""‘.l! tl_i"l:“-: lpy; — R
and Yy 4; =1,

Jj=1

; Let us consider the interval [a, ] and the i
I ' & VA and the integer n > — 110t
Jj_} {J{E)’u Llﬁe 1Jgpa-ce of a-lil polynomials of degiec not grt%a.teff: than I-n.' (T f?_; nOtf
01— p }).b- e ]s!-_(.?:) =o' we [a, b], % = 0,1,.... Let S be a linear subs};l-cu:a
'sai({ [1:.": b] w 11('-_11. contains all polynomials. A linear functional I, :8 - R is
* - 0 be P,-stmple if for every fe 8 there exist n - 2 distinet Hoi tl
1 laye s ytass I0 [, O] sueh that SN

' [23) L{f) = ﬂ:plp . ')z-rﬁvz; f.]'.l

Whereif{ isa 1:~lt:1:sitive constant independent of f
is well known the fnlluwiu,c_f eriteri(iﬁ of P,-si ici
S 7 ! ] owlng criter -simplicit
:[‘ ]3011)01_ icin : Ill }}3‘5 linear functional I :8 — R wsatis?i@sl %{P%ﬂi %0
= 0,1,...,n and I(f) > 0 for any function e s X rder 7,
then it is P,-simple (see [2], Theorem 5.4.1). o, St of e
Our paper deals with a kind of econverse of this result,
For each interval [s, {] consider the operator

: | Dy, :C[s, 1] = CO[a, b],
(2.4) D‘-'Ig(f) (z) = fla(i — 8)/(b — a) + (bs — al)/(b — @), xe [a, b].

Let L :8 — [R be a P,-simple functional an
. ‘ -simple ~tiona d let f:I -
_t-hat. D, (f) € 8 for every subinterval [s,i] of T, & < . fl'f.fis t;-,lc;:\!el:r:\f ‘r?]its?fc}}
1s convex of olfder non I, then L{D,,(f)) > 0forall s,te 1, s <t o
It is natural to ask what property of a P, -simple fu.m’_-‘ri:ma-l' gnaran-

‘tees that the eonverse statement in the above proposition is also valid=?

?\ _e_'mll show‘ that in case that the function f is assumed to he in addi-
xfiUl: ](n f—f»t ]1) 1£l-1mt-!-§_r111'l't]eren.tm,]\lv, this property consists of a certain beha

our of the functional L with respect to the strictly quasico v Mirios
o T 1 strictly quasiconvex fune-
- T[I‘)he quasiconvex functions of order a have been defined recently
J:y . Popovieiu [3]. A real funetion f defined in I is said to be quasicon-
vew of order n (n > 0) on I provided that the following condition

9. xy HE T <t
(2.5) _i.»"’e: gye o Cy@urgs J1 < max ([, @y o 4 @a4q5 1,
[@335 Baye oy 1)
{ B B

The function f is said to be sirécll ) " ord
1 netion f i8 s ;i sirelly gquasiconver of order n o1 if the
nrquality in (2.5) is always strict. : . To e we
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We remark that inéquality (2.5) i8 equivaleﬁt with the inequality
(2.6) 0 < max (— [@yy%y - -y Tatas Sl [T @y c@urs s f1)-

For n = 0 we shall use the terms : quasiconvex and strietly quasi-
convex without mentioning the order 0.

3. Charaeterisation of smooth gquasieonvex funetions of order n.

TammA 1. Let f e O(I) be (strictly) quasiconvex of order n(n > 0) on

the interval 1. Then | is of order n (concave or convey of order m) on &8

or there exists ¢ € I such that f be nonconvey (concave) of order m on I f
N (— oo, ¢| and nonconcave (CoNve: ') of order n on In fe + o0). -

Proof. Suppose that f e On(I) 1s quasiconvex of order = on I.

We will show that f® is of order zero on I or that there existy ¢ e I such

that f® be nonincreasing on I 0 (— o0, ¢] and nendecreaging on 1 0 e,

c0). whenee the conclusion follows immediately. Assume, a contrario,

ok e oints in I such that f®(a) < f™(b)> f*(c).
that there are the points ¢ <b <ein I such J! b)>

Since Hm [@y,. « 313 S ] = f@a)fn! tor z; >z, ¥ = 1, vyt 41 (see

[2], (5.2.17)%) we ean find in I the points

< .. <a7,+]<b]<...<bn+]<01<... < Cptq

f !_bn+1 :f]1> [611' o }2&1 3 .Q' \‘Vhﬁﬂ;e ]t
follows that there are n -+ 2 consecutive polnts, say oy mal. o Unt 99
between the points aqy. . « suggy Dpye « « ,b.,,.l,.l1 and ;-11:150 ???—’_2 cuir}mucu.tcwe poflth,
- Yk sbween the polnts by y0ugy €1y -« 5Cntay
gAY Y < Yg < oo = Ynt between the i -
such il.hu.'t fzvl, Qigye + oy Bargs 1> 0 and [#y; Yse e .,ng,j] < 0. 1tis cleaér
that from the points x; at least @, 18 smaller than gy, j = 1,2,..., 2 4 2,
The points @, 1 =1,2,...,m + 2 together with wy & =12, ..,8 + 2

determine the increasing sequence of poinis 1n I

such that [@p.. - s@asrif] < [y -

2y < 2y < v < Ry
. 2 Titie )
where k>n + 3, # = @ and Zp_p_g+i = 1, for b= L, ..1:,}1 ) 1@-{—‘2. Sz?cg
[21) 29y- - - Zate s J1 >0 and [Zx_n-15 Zk-na+ - -:gk;.l] <0, ere are -
it 1 €4 <y < .oo< psg Sk such that [z,

)OthS 2'{17 21‘2 PR 27:11-;-3’ 1 ' '('IJ i
l ar vl] ] i 1CLS 1Jher
. ﬁ'm.s : f] < (}’ W lt?}l CO]J.‘IJIaJd &

iy 3oy Bhig ;f1 >0 and [2is Zipe
uasiconvexity of order » of f on I. e g .
2 Next, ifyf is assumed to be strictly quasiconvex of order n on I,
J'.' b ! AT} Ed 5 % 3 S W 3 5 .lJE.
e remaining part of the proof is imedia w , et
W 'I';Eclm-m:_;-.ngt fe Y1) (n>1)be such that f4~(¢)=0 and f@ \ ()0
for all @ € I N (— 00, ¢), where ¢ € Iis fized. If @y € Iy < €, @ << & <.--
e R for ks Ly 240 and o — ¢ as k— 00, T == 2y, ..y + 1, then
Watl : 3 i : A Ty '
ero is nob @ limal point of the sequence ([ %y @ - - W13 ezt P
Proof. Passing if necessary from f to a ??rtam (')f f—i— }Jﬂ_ﬁr vltq ((-.IL igg_ : )
: e 5 at fir) . ; N g or & e —_ v
€ Py_g, We may ?bmmu. that f(e) = 0 and f*”(») # 0 1or & y €y
T e o 9 hy mathematical induction after n. For

‘Next we prove Lemma : ‘ he; | induction after n.
n = 1 the conclusion is trivial, If we assune it true for » — 1, then
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according to the recurrence formula

-, 5 & PUE i B B 3
[@g,@1y. .y i 1= (541 — i )([ag,. .. a1 1= [y, af,. .. s 3 S
and since

(% - 3@t 3 FT > FOD(o)/(n — 1) | =0 as & — oo,

we immediately see that the conclusion is also true for z.

L Remmu’ar 1. Similarly we ean prove that if J & @ UI) (n 1)

F"706) = 0, /" 2(2)£0 for all @ € I 0 (c,24- 00), Byss€ I, ¢ <ansy, 2z, .

s S &< By for B=1,2,... and 2f > ¢ as k — oo, 1 — Lgsiare; W

1€1L zeTo 18 1ot a limit point of the sequence ([ Ty Patia I By ot

Toaass, 5 Ietfe O 7 X L1 s gitay Wby g ”k;}l-

e e (I) (n > 2)and ce I, If [ is moneonvem (concave)

9 f‘d non I n (— oo, ] and  nonconcave (convex) of order m on
[6,) + 00) then f is (strictly) quasiconves of order n on I.

J;—Joizf. Assuine that fis coneave of order » on IN(— oo, ¢] and
E?é:nz;i‘iloau?j“ilfr nonlI N i c}‘; + o). Then f™is decreasing on the lirst
rval a lereasing on the second interval and there is o - i
. Land there iy a polynomial
Pu € I, such that ' R

(f+pa)"(e) =0, (f+ pa)*D(e)=0 and (f+pa)?V (2)£0, for every z # o.

1“‘j p 12t S (JSILII() asSUMm L » N <« an [ m Ik ,L, ,I ]] 1 f 1
Illl ) a M Sk tl 311 I X )1,10“ OJ ]4“"5“[]] 12 ‘ d {we 1 : nerelore
wWe 1na vV Su JPOSG tl (.[:t‘ 188 t < m = k ) == \ # 0

Now suppose that f i . ict i |
S1 se that fis not strictly guasiconvex of ord ).

A ; at stric slconvex of order s

Then there are the points b Al

3.1 <. <
(3.1) ty <ty <L T By ollpay

in J, such that
(3.2) [ty gy v ytasss f1 2 0 and [ag, ts. . ypsg; f1 < 0.

?1_1{1100_ jls concave of order » an I N (— oo, ¢] and convex of o1der n on
[¢y 4 "00), by (3.2), we sce that Uy <O <lney 1N case ap << ¢ << apq,

2 <k <n+1) by (3.2) and by the me: alue theore T divid
differences, we n’iust IIELV()% iy vne«m v Hisem (2.2.) i ayded

(a) » [“zr c oy Oy Gpgyye o ylprg; [ > 0 and
[ag,. .. a4, ¢, Art1y + 5lnsg; 1 <0,

or

(b) . [dgye - 50z c, Cri1re < sfinig; f1 < 0 and

[("11' sealey Oy Gpayye v s ylaty; ] 2 0.

T TPy e " alls LR g
J.‘hewfom, replacing if hecessary points (3.1) with

U1+ 5y Oy Opayy. . yGyey 0 case (a)
or with

U1y - -3l Oy Gpeyy. o 4001, In case (b),

S0, 1877
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we may assume that in (3.1), (3.2) we have ¢, = ¢ for & certain i,
3 <k <sn41. ‘ | ool |

In what follows we show that all points in (3.1), except ¢, Erlllr:}tfj
replaced by aibitrary points of the interval (g5 @peq) alber a pred ,
number of steps. Sty Ayl ‘_

First step : Tet @) € (ar.y, ¢) be atbitrarily choscn. We may .11101‘11’(}(;
xy in system (3.1) omitting a; or fn+g SUCH that the new ,gy,q-[(;_m of 1)_011; P
(3.1) also satisfies relation (3.2). This can he provedin the same way 3\
that it was shown that ¢ ean be ineluded in (3.1) with preseryition of vl‘f"")'

Second step : Include in (3.1) a point ¥, € (¢, arsq) dnstead ol o
OF @y4g, as alb Mrst step. | ) ' ‘ fft b o

Then include in (3.1) @, € (2, ¢ v Y5 € (0, 71) and so on (such th,"-
condition (3.2) be fulfilled = fter cac h step). v - 1] ol §

It is not difficult to see that after at most 28 steps (N d;- ¥ 11.(11,. 13

B N . . . LI . a5 X L) A . _: 7 .r‘! 1. 1 - “l;

only on n) from the initial peints «, there will 1emain in {5.1) only
and ¢p_; or ¢ and a4 ) . cyvel (1P hieA1 a2 N

Now let us consider the sequence (a? po1 and {Fidpsayrt =112 oy N
such that

n

(3.3) Uy << < @3

< Ln e e <y < o <y <yt < o
for all p =1, 2,..., and
(3.4) oy —o6, yf > as p - oo,

For each p apply to points (3.1) the above algoiithm with », = 7.

; G = y¥ Ne ain the points
Ty = afy. o5 4y =i, ¥y = 9%,.... We obtain P
(3.3} af < af < ... << abis < 0fisg

i - L Al an
satisfying (3.2), such that of = a;_, (or aZy; = Gz4q) and

9 e ;9 =0 !

af e{af 19 =1, 2, 0., N}U{gP:1i = 1, 2,..., N} for any J =2, 3

o‘b]4— 3 (respectively j = 1,2,...,n + 2). Passing if neeessa;y to a 51;,,. -

sequence we may assume that af = ap—, for all p or that abys = wry, fo

all p. Sl kot ;o

4 In the first case: «f = a,_, for all p, the first inequality in (3.2,
yields

. ! o I 2 e
(3.6) [Gre1y a3y vy aivy; 1 < [y @y y@dies [T, P 1,2,

Since a? —c as p — 00, j =2, 3,...,m + 2, ’r,-he. 11%1‘(;1]1&11‘11(11&;1({19”1]11] 1(1.?“(?f
tends to f®(c)/n! = 0. Then by Lemma 2 we con }1 ]{ hat f('i)(m)>h
point of the left-hand side is < 0. Butb thisIs nnpusmk{ ¢ Jf-.uL?lh_(.‘i ) >0
for every x # ¢. This contradiction shows that f must be stricily quas
convex of order » on I. ' i
If f is assumed nonconvex (nonconcave) of o’r‘de‘r 1% 0}1 Ie P » 51? O;é ;t,
(I 0 [c, -+ o0)) then, by a somewhatl similar Iiiﬁ?lgn{%i}\sr can p
that f is quasiconvex of order n on I. We O.nllt he ’e ! $
Remark 2. The conclusion of Lelama 3 1sf X}ahd for n = 0 .nd n=]
it ; any assumption on the smoothness of f. . » hu'
“71Lh01’i‘1hig,lﬂnés§esrti()11p Iy trivial if » = 0. Let » =1 and f }Jenuofleon;m
(concave) on I N (— oo, ¢]and nonconcave (convex) on [e, + ).
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Supose that f is not (strictly) quasiconvex of first order on . Then there
are points a; < ay << ay << @y in I such thai

(3.7) [y 5 @33 f]1 >{ >0 and Loy gy g5 f1 < ( <)90.

Whence we see that by << ¢ <@g Again by (3.7) using inequalitieg

[y, gy €5 f] < (<) 0and [ey tg, ag; [l = (=)0

ald the mean value theorein (2.2) of dividea differences, we dervive hoth
[y 5 g5 f1 >0 and [ Ugy ¢y g5 [1 > €, a contradiction. Thus J must be
(strictly) quasiconvex of Firgt order on I.

THEOREM 2. In order that a Junction fe Cv(I) (n > 0) be (strictly)
quastconen of order n on the wntervel T 4t 4s necessery and  sufficient that
[ be of order n (concave or conver of order n) on I or there exist a point
¢ €l such that f be nonconvex (concave) of order m on I N (— oo, ¢] and
nonconcave (convex) of order w on I N [¢;, -~ oa),

Proof. See Lemma 1, Lemma 3 and Remark 2. .

Counterexwample 1. Tot n — 0, 1 = [0,1],f: 1 - R, J0) =1,f(z)=n
for any « e (0, 1]. '

This function is strictly quasiconvex on I but there is nol; cel
such that f be decreasing on [0, ¢] and Inereasing on [¢, 17. This shows
that the assumption that f e O(7) in Lemma 1 is essential,

Oountercvample 2. Lot 5 — Z1=R,f:R -, @y =-- w{o--2)
tor z < 0, flo) = a(e — 2)° for g 0.

This function is concave of order 9 on (- 00, 0] ond convex of
order 2 on [0, - co). Nevertheless it is not quasiconvex of order 2 on [R
because [--2, —1, 0, 1;f]1 >0 and [— 1,0, 1,2, f] < 0. Thiz shows
that only continuity does not suffise for'that Lemma 3 apply.

4. The main result, 7,1 [, O] e a fixed interval and § Lo o Luwar
subspace of Cfa, ] which contring all (# 4 1) times differentinble func-
tions defined on [a, b].

TuEORTM 3. Let IS —» R be a Py-stmple functiondd (n > ). The
Sollowing statenients are equivalent

1% The necessary and sufficient condition that g (n -1 1) thmes diffo-

rentiable real function f defined on some interval T be conver of order n
on 1 43 that

(4.1) L(Ds () > 0,
Jor all sitel, ¢ < 4.

2. For any (n + 1) times differenticble real Junction f defined on
some interval |s, t], stricily quasiconvex of order n — 1, which is not of order
no— 1 on [s,t], there exist s’ and t'y s<s' <t <ty such that

(4.2) LDy, o(f)) = 0.
Proof. 1° = 2° Assume that 2° is not true, that is, there exists

an (n +- 1) times differentiable real fanetion f defined on some interval
[s, 1], strictly quasiconvex of order s — 1, which is not of order » — 1



' 168 ' RADU PRECUE 8

on [s, t], such that
(4.3) L(Dgo(f)) <0 forall s, ' e[s 1], s <.

hen, by Theorem 2, there exists ¢ € (s, {) such that f be concave of
%‘11'153‘, 'nb Y— 1 on [s, ¢] zc.,-nd convex of order » — 1 on [e, ]. (ﬁ_U]]_S(‘.{]_llﬂl‘{ l,)':’
each divided difference on # + 1 distinet points in [s,¢] being q(-\_g;m\-{,
is smaller than any divided difference on n - 1 distinet points in [y &I_|
(the last one being positive). On the other hand, by (4.3) and 17 (=)
must be convex of order » on [s, t]. Hence

[#1,%g. « By s S 1> [@ay gy - stz Sl

whenever s < @ < %y < ... < #pty < f. Whence, it follows that e:fwl%
divided difference on n +- 1 distinet points of [s, ¢} is greater than, ,‘-l;n?
divided difference of the same kind on points of [e, £], a contradiction.
Thus, 1° = 2° g (ed 5 by f=
,Gmlverﬁv]y, assume now that we have 2 ..VI.JFVL Jil - R ’11)}1( i
(n -+ 1) times differentiable function such that (“AOH(].,lrtl{;fr_l (4:.11) ls'tsa“illslr 17'1:
“for every [s, i] = I. In view of the strict unf,quahiy in (4. )Il X unjle
sufficient to prove that f is nonconcave of 01'(1@1'”11 on [I. SS,i .
by contradiction that there is not the case. 1..h(311 ’Lhere . ex SS
¢ eint I such that f*+P(¢) < 0. Consequently, there 1s a .I:meel—r(i,
such that f®(z) > f™(c) for all xefc —r¢) <1 aund. f (q:)l<7f (lg)
for all # e (e, ¢ 4 7] = I. It follows that there 1s a polynomla_} ‘LG‘ ,],
such that the function ¢ = f — h be convex of order n — 1 0{11 [e ~l—‘1, c‘j
and concave of the same order on [¢, ¢ + #]. Then, again by J__.hem.t‘.m 2
(—g) is strictly quasiconvex of order n -—1 on [nu—. ry €+ :a:] _m:}d' is ]11?}.
of order » — 1 on this interval. Therefore, by 2°, there exist & and ¢,
¢ —r < <t <c¢ - rsuchthat L(Dse(—g)) = 0,thatls L_(D.,»‘,y(:);)).g Ui
which contradicts (4.1). Hence f is noncor_ieiwe. of order n on I as elalmec
: - roof is now complete. .
e S(}Bfm;kl?;. T[lrlle gdoe(;‘ tiat an (nlz{— 1) times continuously’ d1f;feren-
tiable real function f defined on an interval I be convex fpf-OIi(llel Zz oln
I, it is necessary and sufficient that inequality (4.1) holds for all s,t eI,
t' -+ Al 1] ny
e Indeed, suppose that (4.1) holds' for all{ s,le .I’ s «:L ¥or each
[s, t] there is ¢ € [a, b] such that, by (2.3) and (2.4), we have

L(D,i(f) = (E[(n -+ 1) )Ds /)#+0(e) =
I 41 .
= (K/(n -+ 1)) ( b & ) Fm0(0),

b —a

=c(t —8)/(b —a (bs — al)/(b — a) €[s,¢]. Then f‘.’.‘*“(e) > 0.
gﬁlesr em%ans( that)/i(n ,eac}i _::ubinterval of 1, f‘““’. takeslposmve ;73;1'&1108.‘
Consequently, f®*P(g) > 0 for all € I, that is f iy nonconcave }) 01)(113\11
n on I, whenee, again by (4.1), it follows that f is convex of order
n on I.
5. Examples. a) et ¢ = a, <a; <...
sider the P,-simple functional (n > 1)

(5.1) L:Cla, b] = R, L(f) = [01s s+ Guras f1°

< Guiqy = b be fixed. Con-
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We will show that for this functional proposition 2° in Theorem 3
is true. To this end, let us consider an (n - 1) times differentiable
real function f defined on the interval [s, ¢], which is strictly quasiconvex
of order » — 1 without being of order n — 1 on [s, t]. Then, by Theorem
2, there is a point ¢ € (s, t) such that f is coneave of order 7 — 1 on [8,¢]
and convex of order # — 1 on [e, t]. Let k == min (¢ — s, t — ¢). Since
Ds,544(f) 1s concave of order » — 1 on [a, b], we have

[y Aoy Qgy. oy Guiy; Dssn(f)] < 0.
Similarly,

(@15 @y Gaye vy Gpans Docan(f)] > 0.

Consequently, there exists s” ¢ (s, ¢) such that
[a1y gy gy oy Gueg; Dy, o f)] = 0,

where ' = s" + h. Whence, by using the strict quasiconvexity of order
n — 1 of f, we ecasily sce that

L1y gy gy .y Guuy; Do (f)]= 0.

Thus inequality (4.2) holds _ _ :

COROLLARY 2. Let a =a; < a, < ... < yrg =b be fixed. In order
that @ (n - 1) times differentiable real function [ defined on an interval T
be convex of order m on I it is necessary and suffictent that

[@1) oy v yOutgs Dy (f)1> 0,
Jor all s, tel, s <t.
b) Let a> —1, §> —1, w@) =1 -— 21+ 2 we(—1,1
and let P3P denote the Jacobi polynomial of degree n 41 (1> 1).
Consider the functional

(5.2) L:0[— 1,11 -» R, I(f) = S@U(w) Pig(@)f(w) da.
—1

As it has been shown by A. Lupas [1], functional (5.2) is P,-simple,
Next we will prove that for this functional proposition 2° in Theorem 3
is true. Let f be an (n - 1) times differentiable real function defined on
[s, 7], strictly quasiconvex of order » — 1 without being of order n — 1
on [sy t]. There exists ¢ € (s, ¢) such that f is concave of order 5 — 1 on
[s, ¢] and convex of order n — 1 on [¢, 1]. Denote by 4;, jay. . . sJutr (50 <
for ¢ < k) the roots of the Jacobi polynomial PE® and lel » =
== min (¢ — 8)/(fasy + 1), (¢ — 0)/(1 — jy).

For each y &€ [6 — h (fusy — Jy), ¢] the points :

e(y) =y + Mjx — 1)y kK =1,2,....n -1
belong to [s, #] In addition, the divided difference

(5.3) [2u(¥)y @o(¥)s- - 1 @us(y) 5 f]



170 RADU PRECUP 10

is neua‘une for Y =i = ¢ — h (jn+1 Fii Jl) arid ]_)ogiti've for Y =Yg = Cs
Using the continuity of (5.3) with respect to y, we see that there exists
Yo € (41, ¥5) such that for y =y, the divided difference (5.3) be null.
Let oy, k =1,2,...,m -+ 1 denote for briefness the points a(y,). Recalling

that A < (¢ — S)/ a1 -+ 1), thc inequality ¢ — h(jpsq — _}]) <y 1mp110
the emstonco of a pomi s’ e(s, m) such that (z, — s/, 1) = h.
Similarly, there exists 7 € (@4, ) such that (¢ — @,0)/(1 -—j,l n) == h.
Now, since

Xy 8 @y — X Turg — Bp U — Tuny ;

; _’”‘:‘. T s T T : = I

1 g —h Jorr —Jn L= Ja
we immediately zee that Dy, (f — p) () PEP(2) = 0forall we [— 1, 1],
where pe P,_; and p(ay) = f(og, k=1, 2,..., »n 4+ 1 (vecall that [,:,.1,
Ty - 9Ty )] = 0)e

Omlseq_uonﬂy; LDy F)) = 0 as claimed.
COROLLARY 3. In O)der thot a (n-+1) l¥mes aej/cmnéu.le/ real function

[ defined on an mm'v«d I be conver of order n on I it 1is necessary and
sufficient that

20— —5 . [ 2 — -8\,
W ( BN W ) PED ( & Byl ) fle)yde >0
I —s ) b~

Jor all s,ie¥, § <t
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