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THE ANGLE BETVVEEN TWO SETS AND THEIR
INNER PRODUCT IN ANY BANACH SPACE
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Abstraet. Based on observalion (12) concerning the definition of sin 0 in the Euclidean plane
geomclry, a definilion of the angle between two sets and their inner product in any Banach
space, or for that matter, in any metrie (or even in 2 much more abstract) space js inirodiced.

Our motivation is based on the following considerations in connec-
tion with sin 0, where 0 is the angle between the bounded line segment
A and the line segment B (in the usual Huclidean plane) intersecting at
the point 0 as shown in Fig. 1
(1) The line segment .4 is a set of points each denoted by +
(2) The line segment B is a set of points each denoted DLy.

(3) The line segments 4 and 5 have a nonempty intersection, namely {0}.

(4) Let d(p, q) denote the Iiuclidean dls+ancu of the peint p from the

point ¢ in the Huclidean plane.

5) In Fig. 1, let b be the foot of the pelpendlculfu from the point a to
the hne seomem B. Then the Euclidean distance d(«, B) of the point
from the line segment 2 (using notation in (4)) iz obviously d(a, 8), i.e.,

6) d(a, B) =d(a, b) = min{d{a, 2): € B}
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{7) As Fig. 1 shows, the bounded line segment 4 is the closed interval
[0, ] of length > 0.

(8) In TFig. 1, for every point «; € [0, 7], let b, € B denote the foot of the
perpendicular from «, to the line segment B. Moreover, let ¢ denote the
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foot of the perpendicular from the point # of 4 to the line segment B.
Then elearlyf(using notation in (4) and (5)) we have

(9) |Or|sin 8 =d(r, ) =max {d(uy, B): u; € [0,7]}
=max {d(uy b;) : u € [0, 7]}
However, from (6) it follows that

d(uy, B) = min {d(u; x): v € B}
which by (9) implies

10) sin § = (max {min {d(u, @) : x € B} : 4, € [0, r]})/r
Using a more familiar notation, (10) can be expressed as

1) sin 0)=max (min d(u, z))/r
Wel0,7] r1eB

where the subscript ¢ is droppped from u, since it was introduced in (8)
only for the convenience of indicating that 0, is the foot of the perpendicu-
lar eminating from u,.
Clearly, (11) can be more propitiously rewritten asg
N
(12) sin A, B =sup (inf d(w, x) /» with » = sup d(x, 0)

we[0,7) s€R 2e[0,r]
From (12), with » as in the above, we deduce
~N _ _ _ R
13) 4, B =avrcsin ( sup (inf d(u, 2))/rwith 0 < 4, B < B
uel0,7] xeB

where in the above,
PSS | -
a4 4, B stands for ‘‘the angle between A and B’ (in this order)

N
Remark 1. Based on (12) and (13), we observe that sin #, H as well

as #, H can be readily defined for every bouneded subsel F and every
subset H of the Buclidean plane which (for the sake of simplicity) have a
unique point, say, 0, in common. Let us call the real number r given by

(1b) 7 =sup d(z, 0) the ‘“central radius of A" (w.r.t.0)

rekl
As an example, let B, in Fig. 2, be the bounded set of points (each denoted
by ) in the plane and H be a set of points (each denotd by.) with 0 as

their unique common point. As shown in Fig. 2, every point of the set B

. Therefore, in Fig. 3, we have
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is on or inside the cirele of radius 2. Hence, the central radius of B (w.r.t.0)
is 2. Thus, using notation (14), in yiew of (12), we have

(16) sin 4, H = sup (inf d(u, z))/2

ucik' xSfH
since r =sup d(z, 0) = 2.
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In general, for two bounded sets # and H in the plane

. AN (1) N D) N
{17) Sin B, H # sin H, E and therefore 71, H H, H

_ For instance, in Fig. 3, let 7 = {0, ef and H = {0, h} with central
radii respectively equal to 2 and 4. Then, according to (16), we have

N
sin B, H =sup ( inf d(u, 2))/2 = (sup{0, 2})/2,
v €{0,¢} xe& {0k} .

whereas
i /'\
sin H, #/ = aup (inf d(u, 2))[4 = sap{0, 2))/4.

1 &{0,k} rv&{0,¢}

N <N
i(18) sin 0, H =1 whereas sin H, ¥ —0.5

)’
which validates (17). In view of (18), we may even say that in Fig. 3
the set {0, e} is orthogonal to the set {0, h}
whereas
the angle between the set {0, h}-.aﬂnd the set {0, e} is w/6.

Remark 2. The above examples pértain to sets in the Buclidean plane
where d(u, #) in (16) refers to the Iucliflean distance between the points
w and @ of the plane.
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Let us observe however, that (16) may be made meaningful in con-
nection with points « and « of any (abstret) set M and a function f from
the Cartesian product M X M into the set of, say, real numbers. Moreover,.
this can be done without requiring that f satisfy any of the specific pro-
perties of a distance or a metric function. Furthermore, this can be done
without requiring that # and H in (16) have a unique point in common.
All that we require is that F and A have a nonempty intersection G and
that I be bounded w.r.t. ¢ which now acts as {0} in (15) and (16). In
other words, we require that # be &-center bounded according to the
following :

DeriNITiON, 1. Let M be « set and f be « function from M X M into
the reals. Let A be a subset of M and C be a nonempty subset of M. Then we
say that A is C-center bounded iff
(19) sup (inf (|f(w, 2)])) =7 < co

uecd xe€C
an which case the nonnegative real number v 1s called the C-central radius of A.

Next, based on the above and motivated by (12) and (13), we intro-

duce the following :

DEFINITION 2. Let M be, « set and f be a function from M X M into
the reals. Let A and B be subsets of M with « nonemply intersection ¢ and
let A have « finite C-ceniral radius r given by (19). Then the real number
2N ' |
A, B given below is called the angle belween the set A and the set B (in this
order) -

(20) A, B =arc sin (sup (inf (|f(w, @)|)/r) with 0j< 4, B <

weAd xeB

o |3

PN
ifr #0, end A, B =0ifr =0.

Let us observe that if the sup appearing in (20) exists, then it is a
nonnegative veal number. Thus, to justify our Definition, we must prove
that the sup appearing in (20) exists and its value is ' 7. This is shown
in

TarorEM. Let M, f, A, B, C and r be as in Definition 2. T'hen the follow-
mg sup exists and

(21) 0 < sup (inf ([f(w, 2)])) <7

uwed reB
Proof. For every 4 € 4, let us consider the set
(22) Ly = {f(u, @)
Since by the hypothesis ¢ = B and € is nonempty, from (22) it

: x€ B with ue d

follows that for every o € A it is the case that I, is a nonempty set of
nonnegative real numbers and therefore int I, exists. However, since

¢ < B, we have

(23) 0 < inf L, <inf (|f(@, u)|) for every uec A
xeC
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Next, let us consider the set
(24) H ={inf L, : uwe A}

Again, since by the }lyputllesis 0 < A and C is nonempty, it follows
that H is a nonempty seb of real numbers. Moreover, from (19) and (23)
we see that sup H < Ru? (inf (|f(u, x)]) =». But sup H is precisely the

ned rel

sup appearing in (21). '
Hence, the Thecrem is proved.
Let us obseive that it can be readily verified that (20) implies that
Sl ) i
A, 4 =0 for every subset 4 of M.

Let 3, f, A, B and r be as given in the above Definition 2. T

Iy 1, 1S Q0 in t Snition 2. Then

from-(20) it follows that if r = 6’, we have i e

. ] PN ) N
(25) sin 4, B =sup (me (If(w, 2)())fr and sin A, B =0 if » =0
e ye
- T Iy~ D //\\
Based on (23), as expected, we define cos A, B as follows
A Pl
(26) cor d, B =4 (1 —sin? 4, B)»2

» 1”501 a subset Sof I, let as usnal diem(8) stand for the ‘“diameter
of 87, where

(27) diam (8) =sup {|f(z, 9)|: (a, y) €S x &)

" Finallv, based on (26) and (27), we define the “4nner product” A - B
of the set 4 and the set B(in this ord er) to be the real number given by

; | A e
(28) A-B =diam (4) diam (B)-cos A, B with diam(4)-dim(B)< oo

Remark 3. Tn the ahove Definiton, 4, B is defined for the case where
the C-central vadius » of A is bounded, ¢.e., » << co. The case r — co
as usnal is handled as a limit of bounded cases. -

Remark 4. Let us observe that in Fig. 1, the angle 9 gives o measure

3 /’\k
of the wedge between the lines (sets) 4 and B. Analogously, A, B as
Hatmgm-.ed by (20) may be used to give a measure of the wedge or the
gap bet‘_‘voel} two subsets 4 and B of an abstract space M with respect
to & function f mapping M x I into the set of, say, real numbers. Simi-
larly, the inner produce 4 - B as introduced by (28) may be used in defin-
img the notion of the “projection” of a set A on a set B.Even if M and

J are guite untamed, the concepts of A, B and A+ B may still prove to
be useful. i
2N
Clearly, the concepts 4, B and 4 - B as introduced in (20) and (28),
may become miore useful if M shares more properties with a Euelidean
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space and f shares more properti
would be the ease if 4 and B are
of a Banach space M and fis
See the References below.

The author thanks Dr. Tryphon T. Georgiou for a brief but helpful
discussion. |

©s With a metric function, In fact, this
subsets (with a nonempty intersection)
the metric derived from the norm of M
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