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i. Intreduetion. In this baper we construct and test an algorithm
for solving the multi-point boundary value problem, which is from the
elass of such algorithms as were deseribed in [4], The algorithm for soly-
ing two-point boundary problems was constiucted Hy Tewarson and
Huslak [56], the algovithm for solving three-poing boundary value pro-
blems was constructed by Pelcir [3] The exact formulation of the pro-
blem and the used notation are given in §2. A generalisation of the above-
mentioned algorithms for multi-point houndary problems is described
in detail in §3. Phe numerical aspocts of the method are congidered in
§4. Here are also discussed some resulfs obtained from computationg,
experiments.

Ze The fermulation of the probiem. We consider (he numerical

solution of the multi-point boundary value problem for the system of ¢
non-linear differential equations :
1 'l o gif s
(1) Y@ i () ==
with linear beundary value conditions
iv
(D) 2“ A () = b .
=1

where 'y and f arve functions witly values in B o, Lyl gy
At =1,2, ..., ¥)are given N x N matrices, and & ig g given N Xk}i
vector, We assume that problem (1), (2) has an isolated solution! gnd ‘the
funetion f iy suificiently smooth. | | 19541

Let us subdivide each # range [y @4], & =1, i T ol 4
imto my; equal parts of the length h, — (@1 — @) /m, Thus the @ ra,ngé
[@, v ] i subdivided into m = m, Ty e 1 Subinteryalg
[%5 #41] , and we get & mesh containing m - 1 points. :

Lét us denobe the exaet value of the solution of the problem. (-j_) (2)
af point g as y(2), the approximation of ¥(#) as gy, and f;= f(%,’ ).
A ¥ s 2 vector with m - 1 components y,. Hvery component Yy I8 4
vector containing s components. i )
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If 'we integrate equation (1) in the interval [z, 241, 1 =1,2, ...,
m, then we have

[z

it

(3) Y(zi0)— y(&) — %f‘(z, y(2)) At =

1

Let us evaluate the integral in (3) by a numerical vulei /. We.obtain
the following integration formulac

(4) Vit v Y Al =

=1, 2, ...,m, ¢=1,2, ..., N — 1, where ¢ depends on j. The inte-
gral ma\ be evaluated by different quadvature rules. It the used rule hos
the local order of accaracy o, then (4) will be written in the form

(9) Yisr — Yi — R LG = 0.

23

{ (the method. The evaluaiion of the inrogrsd
system of san equations in s.(m - 1) vavigbles.

3. The {in‘-‘-‘.(‘rip(iem ¢
in (3) by (4) leads to a s
From (2) we geb

(6) Ay Ayt - A, g Ymyrt Al =10
which is now a system of ¢ equations in s+ N variables.
tinear systent, we can express s variables from (6) i e
s8N — 1) variables and then utilize them to eliminate s variables from
the system obtained by (). The resulting system of s cquations in s.m
variables can be written as

(7 ly) = 0.

To solve (7), we select a starting vector y™ and proceed iteratively,
obtaining refined approximations y® to the solution vectoy,

An iteration consists of thee steps which we describe now in greater
detail.

Tiet ¢ be o given local error tolerance and = an appm\mnw
golution \’e(l()] for (1), (2). Let us specify the minimun: order of accuracy
of the used numerical rule in (4) and denote it as S. Fivst we caleulate the
values of H$® and H5*2, where 115 denotes the composite numerical rule of
the 01’(101' of accuracy 8 (the rule H¥ ig used twice: on the subinterval
[ 2y 212 | and on the subinterval [NJ, y2y #441) land 15 denotes a nameri-

2al, rule of the order of accuracy 8 -- 2 which is hum the same elasg of
nuwmerical rules as the rule HS is. We calcalate these values tor all 4, if
the difference
(3) y HES (1) HE R (gt

/

‘which is an estimate of the local error and is of the order 8, is Iess than e
for any ', then We 1se HEYR (=05 00 (7) 5 otherwise the estimate of the
order &

) | GO (yth=0) o HEFA(gle=1) |
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is caléulated and compared with el If it s less than e, thew:the| value of
LEH0 (y=1) 1y used as the value of H;in (7); otherwise a repeated bisec-
tion of the interval under consideration [z, z;.,] until the local ervror tole-
rance it net, is necessary.

Thus we can write the calculation of the value H; (actually the step
@ of the iteration) in the form

BIAYETY) pE | HE (i) — HI Ry 6-0) | < e,
H"_ — Hf,?’“(‘)/(’f—”) it ;H}C’ﬁ'“? (}/("“1)) S H_,‘,/-('H(‘I/(l"*l)) {<
see slep b otherwise,

[©]

forj—1,2,...,m.

Tt the estimate (9) 1s greater than ov equal to ¢, then we sbart the
step b of the iteration, else we go to the step ¢

It the use of step o ismecessary, we add point' 2., to the origi-
Jm‘ inesh and instead of the interval [, #.1»] we counsider the subinter-
valbs [2,, Ziy2] and (2590, 254, ] We apply the step @ of the iteration on
both subintervals. At this stage O(h*"3) values 0’F the approximation of y
al points inside the mesh-points ave required. Thiz probiem is touched
in §4.

We repealedly bisect all such intervals which do nob satisty the local
ervor tolerance until the aboveanentioned tolerance i met or too mainy
Diveclions take place. In the i case e give the sum of the p,nul'ﬂ
values of H obtained by repeated bisection al the place of H; in (7)

(a1) Hyi== 300 Hyy (=)
i

{

for all such /. 7§, 4 < § 1 and the lIocal error tolerance ix meb
on Iz, .4 e Intter case the use of our proposed method does not
iead to the xwu'.xiul tinish.

The above-tescribed steps of the cuvrent iteration give the loeal ervor
control of computations. :

The tinal step of the itevation, step ¢, Iy the Newlon step to update
the ewrrent approximation y# .

(12) YU = ) — [ ()7 Z(yu),

where J{I'(y*=1)) denobes the Jacobtaw of & with respect to  evaluated
at 'f[/(f\'—])_ 3

The Jacobian in {(12) can ba computed by the consistent discrete
_approximation | [2] : |

Y8 JER0)) e (Bhe) 5 e — F(yn))/s,

where ¢ is the j-bh columun of the identily watvix ol the ()s.‘{lw sm and &
is a suitable small number. By the Diserete Newtot Theorem 127 the con-
vergence ot (12) is not affected by the use ol (13).

4. Numerical aspects of propose:d method and namerieal experiments.
*In this part of the paper we toackh the question “How o choose o suit-
“able interpolation formuls for the sfep & of the itervation’ and discusse
results obtained from computational experiments.
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The 'algorithm was tested on following two multi-point boundary

value problems [

Y1 = Yo :
. ?jz' = Ya
Y5 = Yay

e = (11488 - 49 12 4 32 ¢ — 12) ¢,
41(0) = 0, y2(0) = 0, y,(1) = 6, yy(1) = 0,
with exact solution
n(t) = 131 — t)2ef,
Yalt) = (1% - 213 -~ 512 4 20) ¢!,
Yalt) = (1* - 612 - 12 — 31 4 2) ¢,
Yalt) = (1% 4 1013 - 1912 — ¢ — 1) ¢!,

resp.
Yi=Ys
¥s = By — ¥3),
Ys = Ya

Ya = oy — ¥,
$10) = 0, ¥,(0) =0, yy(s) =0, y,(s) =0,

with § =10, 0 =107%, o = B = 2.5,
which exact solution us

(o
Y%y == 52 (v/r + ¢ — yeosh(rt) | + 2 sinh(rt)/»)..
[+4
C
Yo = B—z (3 — ¥y sin h(rt) - & cos h(r?)y,
r [0 .

o e -
Yo = (By/r -+ Bt + ay cosh(rt)/r — B sinh(rt)/r),

¢ ;
Yy = 72_(;@ 4 @y sin b(rt) — Beosh(r)),

where
SOMARLEIL L T I".l_'jﬂi_:::<(x‘_]_ B)I/Z il ; NI tat]

b b =2 cbsnrs) L1 s (i)l
GRS L0 bilahig e iy

n
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All computations were performed in double precision arithmetics

on a SM 52/11 computer using FORTRAN 77. In the step @ of every ite-

ration the following quadrature rules were used :

Hf = (fit+ fi1) /2,

AP = (fy + 2firye + fin) /4,

3 = (i ot iy 4 fr) /6,

HP = (fi + &fiveys 4 2finve + 4 s - fr)/12,
and

Hj = (f; - 32f5412 + 12fit12 + 325151 4 fr1)/90,

All these formulae are well known. H? denotes the trapezoidal rule, H}
denotes the Simpson rule, Hj denotes the Newton-Cotes rule, and H$* and
H® denote the appropriate composite rules.

The last problem we yet touch is the computation of the approxi-
mate values ol the solution inside the mesh-points and the appropriate
vatues of f. Various interpolation formulae are available to satisfy the error
criterion. The used formula must be at least of the order 8 -+ 4, because
the use of lower order formula does not lead to significantly better resulis.
Tror all needed interpolations the Newton forward rule and the Newton
backward rule of the 7-th order were used.

In Table 1 we compare the maximum of absolute ervors for all com-
ponents of the solution for both tested problems. The computations star-
ted with 1001 mesh-points (i.e.m = 1000).

Table 1

maximam of absolute crror in
7 i

Y 12 | Ys Ya
Lhe first
problem 1.10713 7.1071¢ 1.10713 5.10713
ithe sccond
problem 31071 4.10711 7.10712 7.10712

In Table 2 you can find the number of iterations and the number of
@added points which was needed to achieve the requested accuracy for
ithe second boundary value problem which is strong non-linear.

Table 2

Absolute

10— 108 1010
accuracy )

number of
iterations 13 17 25
number of

added mesh-
points H 19 43
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Finallyg e cans say Hhat the

1 o lot of
‘omputaliions, bul it leads o the soe |

Fohentini, M. Perveyrva, V. Apariable order [intte difference method for nonlinear
mallipoint boundary value problzm. Kath. Comp, S8(1974), No. 128, 981--1003.
ZoO0rtega, J. Rheinboldt, W, C., ierative solution of non-linear equations in several
variables, Academic Press, New, Yorls, 1070,
Pelkar, J, An dgorithm for seloing ihe hiree-paind boundary nalue ])'."r)hl('m/'ol' 0.D.E.
Acta Math. (in press).
cPelar 5., 0 jJednej tricde ulgoritinon pre riedenie okrajovyceli iloh pre nelinedrne obyéajné
diferencidalne ropnice. Sisy-Véicv, 19(1985), 108-— 109,
G Tewalson, BRI, WHuglak, W8, An adaptive imptemeniation of interpolafion
methods for houndary value ordinary differeniial g'_{/um’ilqns. By flfﬁ_*» (1983), 382-- 387,

ierical and Oplimizing Melhods
nenins  Unipersiiy

15 Hratislava

clioslovalkia
fedd 0 PR S R fl [l fusl I PO 1Ty [

vod 22.X1L1688

Race




