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b. Iutrednetion. The aim of thig paper is to study the relations
between two theorems of characterization of Dhest approximation for
convex sets proved by V. N. Nikoleki [13], [14] and S. A. Azizov [2]
and to extend Nikolski’t theorem to the case of best approximation by
elements of p-convex sets.

2. Characterizations of elements of hest approximation by clements
of convex sets. Let X be a normed §pace (over 2t or ) and let X* be its
conjugate space with elements denoted by fy ¢, ... . Let 8% — {feX*:
[/l =1} denote the unit sphere of X and B the unit ball of .\,

' Asubket I'of S* is called Jundamenial if

(2.1) I'is w*-closed,
and

(2.2) YaeX 3% e such that @] = [fo(®)| = sup Ufl@)] : fe T (the
symbol w* will refer always to the a(X*, X)-topology of the space X*),
Obviously, the whole unit sphere 8% is a fundamental sef but, as
we shall see by an example, there ave proper subsets of 8% ‘which are fun-
damental. A possible candidate for | would be the set extB* of the
extreme points of B*, In this case the condition (2.2) is verified bhut the
set extB* is not always w*-closed. Tor this reason, there are two type
characterization theorems of the best approximation elements for convex
sets i
— Pheorems giving characterizations in terms of some fundamental
subsets of the unit sphere 8%, on the line of V.N. Nikalslki [131, [147, and
— Theorems giy ing characterizations i . termg of the extreme
points of the unit hall B* of A*,ag given by A, L. Garkavi |[7] and by
L. Singer [17] (see also [18], Chapter I, Th, I.13 and Appendix I, §1).
In this paper we shall be concerned  with theorems of the first
Lype. Those Imvolving extremal points of the unit bail of A* will be con-
sidered in a subsequent, paper.
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As usually, for a nouvoid subset ¥ of a normed space X and @ € X
denote by d(z, Y) =inf{||lz — yl|: #'e Y} — the distavice from z'to Y,
and by P (2) ={y&¥: |oi— y| ==d(z, ¥)} —the (possible void) set
of nearest poinis to win Y (the elements of Py(x) are called also projections
of z onto Y, or elements of best appromimation of » by elements in Y).

Now, we can state the characterization theorems :

2.1. Turoruy (V. N. Nikolski [13], [14]). Let Y be ¢ nonvoid sub-
set of a normed space. X, T « fundamental subset of 8%, » ¢ Y and y,
€ Y. In order,that y, be a neajest point to @ in Y it 4s sufficient and, if ¥
18 convex, also netessary that joi every y e Y to exist o funcitonal f =, e T,
such that '

(1) fle = yg)| =Hw — 1,1
and
(N2) e [fir, — 9 @ — go)1> 0.

2.2, TuporeM. (3. A Azizov [21). Let. ¥ be a nonvoid conver subsed
of @ normed space X, U« fundemeyial subset of 8% and x € XIN\TY. An
element 1y, €°Y £s w nearesi point 1o & 1w X if and only if for every ye¥Y
there exisls « funclional [ =7, such thal

(A1) e = gyl = fio — g,
and
(A2) Re[f(w i y) fioi—y)]> 0

]

The following propositicn shows that the necessity part of Azizov’s
theorem is an immediate consequence of Nikolski’s theorem. The Example
2.6.b) shows that eonditions (Al), (A2), ave nol always sufficient in order
that g, be a nearvest point to o in 1.

2.3. PROPORITION, Lel X be anormed space, iy, y € X and @€ X\ {¥y,
y}. If the functional | e 8% verifies conditions (N1), (N2), thenf verifies also
condittons (Al), (A2). _

Proof. Suppose fe 8% wverifies conditions (N1}, (N2). As condition
(Al)is the same as (N1), it remains to prove that f verifies also condition
{A2), which follows from the following calculations :

Re[f(z — y)fie —"yo)] = Rel(flw — y,) + flve — ¥) flo — wy)] =

= |fle — yo) |12 + Rel[f(Wo — 1) @ — @)1 =’ | & — yol2 ~

7 (Y2, T
+ Relflyo — ) flw — 2)] > | ~ly, |2 >0.

Let’s also mention the following result :

2.4 TaporeM. (A, L. Garkavi [6]) G. Sh. Rubinstilein [16]),, Let
X be a normed spoce, ¥ a monvoid convex subset of X and EX\Y. An
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element y, € X is o nearest point'to x in'Y 4if and only if there lewists ¢ func-
tional fe S* such that

(@1) @~ yo)| =le < g
and

(G2) Re f(yo — %) > 0, VyelX.

2.5, Remark. In this case the characterizing functional [ does not
depend on the point y €Y and, geometrically, conditions (G1), (G2)
mean that the hyperplane H = {ze X : Re flo —i2) = |lo — io |} sup-
ports-the closed ball B(w, o — ¥,|)) and the zet ¥ at the 'same point ¥,
and separates them. Indeed

Re flo — 2) < |flo —2)/ < |
for all z € (z, | — 24|), and

B — 2/ < o = gl

0 < Reflyo—u) < Re fly, — 2)+ Re flo —'y) =
=— e — gyl -+ Re flw — y), implying

Re flz —u) = o — v, for all ye¥,

This geometrical in
V. N. Burov {31,

17 (I Ty e HO s
Wi's theorem was given by

i

1R
conditions (ALY, s Trom bhecrein 2.2, ae not ensure that
point ie o in ¥,

“the

3L e NaVEe

i R A 1 X p LA )
Ny @i = e A @], for 2 = {4
g AT 2 i b i
yor 2 28 < 1, go = (-1, )

snent, '

G :l‘hg conjugate space of X iy X# = K* with {he l.-norm I} =max
Ufily fal}, f0r fims (i fo) € B2 a0d fl@) = fiarg + foay, for @ € X,

"Nalr Y b O Voswheta £ 77 1 49 E \ -£1 A5
| Take T = gy whee f = (1,1) L g = (=L 1) As [fid — g, =
==l oy i and g(@ =y = |& — Yoll J econdition (N1) is automsatically

verified,

For' ye¥ 'put T, = el Wy, — AT —4)> 0}, H,—={zcRe:

) — f(yo) =0} = {w e B2 2= (ay, my), @' 2, = —1} and Hy={x e £?:
(@) — g(yy) =0} ={weR2: &'=(a, Tp), — @y - @y == — 1}, Let Hi, HY,

© =1, 2 denote the corvesponding closed temispaces. Since f(& — g )=
=1 and @& —1,) = —1, it follows {(hat J@o =@ — 9 >0 =
<> j{(:efo —¥)> 0% yeH; !

ang

j( o
4

¢ —y)g(F — o) 2 0 = gy, — ¥) <0 < yeHF
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. Therefore, we have o consider the following three sitnations :

(i) if ye Y n dr n Hf then T, ={f, g =T';

(i) if ye¥ n HY then T, = {g};

(iii) if y e ¥ n H then I, ={f},
which show that the characterizing functional effectively depends on the
point y €Y.

b) The hypotheses are the same as in case a. We shall show that
there exists a point 4, €Y, y; # vy, such that conditions (Al), (A2) from
Theorem 2.2 are satisfied. As y, = (—1, 0) iy the only element of best
approximation for 7 = (0, 0) by elements in Y it follows that conditions
(Al), (A2), do not characterize the elemenj‘gs of best approximation.

Take 7, =(a, B), where a= —2 4 |/2/2, p=1/2/2. Then & — y, —
=/(—«, —B). The fundamental set I' = {f, g is as above, so that condition
(Al) is again automatically verified.

Take a point y = (&, n)e¥, £ =—24pcost n=p sint, 0
<p <1, 1[0, 2x]

It follows that

A& =) fiF —y) =(2 —pcost— psint) (— o — §) =
= (2 — pcost — psing) -2 >0
and
JE—gF —y)=(—24 pcost — psint)(a — {)
=(—2 -+ peost — psint)(—2) 1~ 0,

so that condition (A2) is verified by both of f and ¢ for all y € Y.

3. The case of preonvex sets, There are many extensions of the no-
tion of convexity. ITn 1967 J. Ponstein |14 ] counted seven and, since then,
very probably that their number has considerably grown, but it is not
our intention to give a detailed account of the present-day situation in
convexity theory. In this paper, we shail be concerned with one of this
extension, namely with the so-called p-convex sets : For a fixed p, 0 <
< p < 1, a subset 17 of a vector space is called p-conver if p¥Y - (1 —
— p)¥Y < % . The notion of p-convex set is a particular case of the more
general notion of quasi-convex seb considered by J. W. Green and W. Gus-
tin [8]: A subset Y of a vector space is called gquasi-convex it together
with any of its points x, y it contains also all the points dividing the
segment [, ¥] into a ratio belonging to a prescribed set A = ] 0,1 [(i.e.
ar + (1 — o)y € X, forall « € A). Obviously, that for A == {p} one obtains
the notion of p-convex set. Some topological and support properties of
p-convex sets were studied in [1] and [11]. Applications to p-convex
programming and to duality theory for best approximation by p-convex
sebs were given in [12] and [4].

The main resull about p-convex sets we shall use is the following
lemama, which can be easily proved by an induction argument :

3.1. Lumma, If Y is a p-convex set and %,y €Y then p° 2 4+ (1 —
—pNyecX, forall ne N,
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3.2. Proof of Nikelski’s theorem for p-convex sets. |

Necessity. Suppose that Y is a p-c < j "

N ¢ hat p-convex subset of a normed space:

g‘; mfe _,1\.? s Yo €Y and I’ Is a fundamental subset of the unit spI]}lere-‘
PO the conjugate space X*. We proceed by contradiction : Let y,

€ Py(z) and suppose that there exists an element #, €Y such that ’

(3.1) (@ — yo)] <lle — #,]

or

(3.2) Re [f(yo — ) flo — yg)]'< 0,
for every fe . For ne N let

(3.3) Yntr =2" - (1 — pMy,

We shall show that there exists g € N, such that
(3.4) U = ) < [ <y

for all feI', whence, by i 7§ I | <<
f el €, by (2.2) it follows |& — 4y, i < o — w1 ik
contra.dle‘qon to the hypothesis that g, is a nearest [b]oint ilo 2 i.‘()’,LO ;; =
Consider the following three sets - 4 Pricid

U= {fel: Be [fly, = y) /7 — a5 1< 0}
1 A =ENU ={fel: Rel[flys ) fix L79] 3 0
ang

A F Y, b " N
A= fels e —yo)l =fo < gl

By the <.-I_'mi(;e of the element y, (conditions (3.1) and (3.2)) we have
A < Uso that A n A =@, By Alaocghu-Bowrbaki theorem. .'the ﬁa;at ‘}2*
18 w*-con ipaet, whence, by (2.1), the xet D' is also fw*—mmip}l.ct B‘;ince'A
is a w*-closed subset of T'it follows that A Las the following I}I:O]E}t‘-l'i'-ies :

{3.5) the set & is w*-compact,

and

(3.6) VIeA Iftw =yl < fa — gyl )
B LS Lty - tatll, s lulie 4 . .

Tl ¥ the w*-continuity of the wpphmtmn f = Ifle — o), it follows

(3.7) m i = sup{|f(@ = yo) | 1 f A < |2 gyl

Take ¢ > 0 such that
(3.8) @i =mt e <o — g,
and let V be defined by ‘

(3.9) V.= {fe8% 0 |fle — yy)

| << a}.
It follews that ¥ is a velatively w*-open subset o

£ SF" and A < V.
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Now, taking into account definition (3'.3) of ¥, we obtain
(@ = yud) | SPIf@ < 9| + @ = p¥) [flw = g) <
<Pl =l A =pa <o —y,),
for all # > n,, where n, € N'is chosen such that

(3.10) 0 <pm <&l —a 4
le -yl —a 1

It follows that

(3.11) (@ — Yuer) <ll@ — 5,
for all n> n, and all fe V.

Now, since V is a relatively w¥-open subset of S* it follows that the
set W =UN\YV =TI\V has the following properties :

(3.12) the set W is w*-compact,

and

(3.13) Ve W, Re [fly, — w) flo — 5,) < 0.

Therefore

(3.14) b: =sup{Relfly, — ) flw — y,)]: f e Wi <0
8o that

(3.15) @ =y P = [flw — yo) + p* £ (g, — Yo)] -

@ —90) + 9" flys — 90 1 = e — y) P+
420" Be [fly; — yo) fl@ —go) 1+ 9 (S, — ) ? <
<ll® = 9ol + 269" + p2 g, — g, o< 5 — , I
forallfe W and alln > gy Where n, € ¥ is chosen such that

— 2b
(3.16) B <o el
%0 — |7
(Obviously that condition (3.2) implies y, # y,).

Now, combining (3.11) and (3.15), it follows that (3.4) holds for
My = 1NaX {ny, #,}, which ends the proof. of the necessity part of Theorem
2.1 ;

Sufficiency. Suppose that Y is an arbitrary subset of a normed space
X, #eX\Y and y,e¥. Let y be an element of Yand let f=fer
veritying conditions (N1), (N2). Then '

1 = 40P 1f(@ — yo) 12 =@ — y) flz =g =
= Rel[fle —y) flo—y) 14 Re [fly — ) Fw —30) ] <
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(N2)

< Re [flo =9 fle —9) ] < Ifle — 9| fle — )| <
<z —ylla — y,l,

implying, | — y,| < ||# — 7. As the element y¥ was arbitrarily chosen
it follows & — ol < l|o — ¢ [, for all y €Y, i.e. %o € Py(z). Theorem 2.1
is completely proved.
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