MATHEMATICA – REVUE D'ÀNALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION ## L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION, Tome 19, N° 1, 1990, pp. 15-19 If there exists un G the same armeture of group (G.,) and exist a beach, and $E \in \perp ut(G_{r_r})$ and that ## RELATIONS BETWEEN THE HOMOMORPHISMS OF (n+1)-GROUPS AND THE HOMOMORPHISMS OF THEIR EXTENSIONS AND REDUCES $U_{-}(0, p) = \mathbb{E}_{\Sigma}(0, p), (0, p) = \mathbb{E}_{\Sigma}(0, p), (0, p)$ I. COROVEI and V. POP a quicing fit have to maintenance (Cluj-Napoca) community and your good a distributed to manufacturation of a sister of the 1. M. Hosszú [4] has proved that (G, φ) is an (n + 1)-group iff there is a binary operation "." defined on the same set G, a certain automorphism $\alpha: G \to G$ of (G, .) and an element $a \in G$ such that (1.1) (G.,) is a group; $\alpha(a) = a$ and α^n is an inner automorphism of (G_n) defined by a, i.e. $\alpha^n(x) = a x a^{-1}$ for any $x \in G$; (1.3) $\varphi(x_1, x_2, \ldots, x_{n+1}) = x_1 \alpha(x_2) \ldots \alpha^n(x_{n+1})$ a for any $x_1 x_2$ $x_{n+1} \in G$. If $(G, ..., \varphi, \alpha, a)$ satisfies the Hosszú conditions, then the n+1group (G, φ) is denoted by $\operatorname{Ext}_{a,n}^{p}(G, \varphi)$ and it is called the n+1-ary extension of the group $(G_{\cdot,\cdot})$ with respect to (α, α) and $(G_{\cdot,\cdot}, \alpha, \alpha)$ is called a reduce of the (G, φ) . W.A. Dudek and I. Michalski [3] have generalized the Hoszú theorem such: An n+1-groupoid (G,Φ) is an n+1-group if and only if Φ is of the form $(1.4) \quad \Phi(x_1, \ldots, x_n, x_{n+1}) = \varphi_{s+1}(x_1, \gamma(x_2), \ldots, \gamma^n(x_{n+1}), C_1^m), n = ms$ where (G, φ) is an m+1-group and γ an automorphism of (G, φ) such that. $$(1.5) \ \gamma(C_i) = C_i, \qquad i = 1, 2, \ldots, m$$ (1.5) $$\gamma(C_i) = C_i, \quad i = 1, 2, ..., m$$ (1.6) $\varphi(\gamma^n(x), C_1^m) = \varphi(C_1^m, x), \quad \forall x \in G.$ The n+1-group (G,Φ) is denoted by $\operatorname{Ext}_{\gamma}^{s}c_{1},\ldots,c_{m}(G,\varphi)$ and it is called the n+1-ary extension of the m+1-group (G,φ) with respect to $(\gamma, c_1, \ldots, c_m).$ Note that $\operatorname{Ext}_{\gamma}^{s}, c_{1}^{m}(G, \varphi)$ is the same with $\operatorname{Der}_{\gamma}^{s}, c_{1}^{m}(G, \varphi)$ from [3]. We denoted an m + 1-group by (G, φ) . In an m+1-group (G, φ) to every $e \in G$ there exists a unique skew element $e_{\infty} \in G$ such that $$\varphi(e, e_{\varphi}, e, x) = \varphi(x, e, e_{\varphi}, e) = x$$ for any $x \in G$, $i = 2, \ldots, m$. 2 In [2] we have proved the following: Theorem 1. If (G, φ) is an m+1-group then $(G, \Phi)=Ext^s_{\gamma, e_1^m}(G, \varphi)$ iff there exists on G the same structure of group (G,.) and exist $a,b \in G,\alpha$. $\beta \in Aut(G,...)$ such that. $$(1.7) (G, \varphi) = \operatorname{Ext}_{\alpha,n}^{m}(G, \cdot), (G, \Phi) = \operatorname{Ext}_{\beta,b}^{\alpha}(G, \cdot)$$ and $$(1.8) \ \alpha \circ \beta = \beta \cdot \alpha, \quad \alpha(b) = b, \quad \beta(a) = a.$$ Let (G, φ) and (G', ψ) be two m+1-groups and (G, α, α, a) and (G', α, α, a) α' , α') some of theirs reduces. In the sequel we will need the following result (see [1]). TOTAL VALUE OF THE PARTY. THEOREM 2. A map $f: G \to G'$ is a homomorphism of m+1-group s iff it exists a homomorphism of binary group $g: G \to \widehat{G}'$ such that $$(1.9) \ f(x) = f(1) \ g(x)$$ $$(1.10) \ g(\alpha(x))\alpha'(f(1)) = \alpha'(f(1))\alpha'(g(x))$$ $$(1.11) \ f(a) = \psi(f(1), f(1), \dots, f(1)) \ \text{is the first of the problem}$$ where I is the unit element of (G,.). by at lest seller) me or at low entry or mits 2. Our aim is to give sufficient conditions in order a homomorphism of m+1-groups to be a homomorphism of their n+1-extensions and conversely. Then we will establish some relations between some homomorphisms of polyadic groups simultaneous reducible. Let $(G, \Phi) = \operatorname{Ext}_{\gamma, c_1^{m}}^{s}(G, \varphi)$ be and $(G', \Psi') = \operatorname{Ext}_{\gamma', c_1'^{m}}^{s}(G', \psi)$. Let $$(G, \Phi) = \operatorname{Ext}_{\gamma,c}^{s}(G, \varphi)$$ be and $(G', \Psi) = \operatorname{Ext}_{\gamma',c'}^{s}(G', \psi)$. Remark. From Theorem 1 follows that there exists on G the same binary group operation, the elements $a, b \in G$ and $\alpha, \beta \in Aut(G, .)$ such that (1.7) and (1.8) are verified. Again from same theorem it follows that we can choose for the reduction of (G', ψ) the element e' = f(e) which will be the unit element in (G', ...). m+1The pairs of polyadic groups (G, φ) and (G, Φ) ; (G', φ) and (G', ψ) are reduce to the same binary operation by (2.1), $x \cdot y = \varphi(x, e, e_{\varphi}, y)$ and $u.v = \psi(u, e', e'_{\varphi}, v)$ respectively. Therefore, we have (1.7), (1.8) and below is a off and some state of the source sour called the w = 1-ary extension of vite w = 1-group (G z) with respect to $$(G', \psi) = \operatorname{Ext}_{\alpha',a'}^{m}(G', \cdot) (G', \Psi) = \operatorname{Ext}_{\beta',b'}^{n}(G', \cdot)$$ where where $$a=\varphi(\stackrel{m+1}{e}), \quad a'=\psi(\stackrel{m}{e}')$$ (2.2) $$b = \Phi(e'), b' = \Psi(e')$$ and (2.3) $$\gamma \circ \alpha = \alpha \circ \gamma = \beta$$; $\gamma \circ \alpha' = \alpha' \circ \gamma' = \beta'$ Since f(e) is the unit of (G', ...), from Theorem 1 we obtain Corollary 1. The mapping $f: (G, \varphi) \to (G', \psi)$ is a homomorphism of m+1-goups iff f is a homomorphism of binary groups and following relations are verified $$(2.4) f \circ \alpha = \alpha' \circ f,$$ $$(2.5) f(\varphi(\cdot e)) = \Psi(\cdot e').$$ Corollary 2. The mapping $f:(G,\Phi)\to (G',\Psi)$ is a homomorphism of n+1-groups iff f is a homomorphism of binary groups and we have $$(2.6) f \circ \beta = \beta' \circ f$$ $$(2.7) f(\Phi(e)) = \psi(e')$$ Theorem 1. If $f:(G,\varphi)\to (G',\psi)$ is a homomorphism of m+1groups and the following conditions are verified $(2.8) f \circ \gamma = \gamma' \circ f$ $$(2.8) f \circ \gamma = \gamma' \circ f$$ (2.9) $\exists e \in G$ such that $f(\varphi(e, c_1, \ldots, c_m)) = \psi(f(e), c'_1, \ldots, c'_m)$ then f is a homomorphism of n+1-groups (G, Φ) and (G', Ψ) . Proof. We define on G a binary operation by (2.1) and we can define on G' a binary operation, too, such that e' = f(e) is the identical element of (G',.). Then $b' = \Psi(f(e),...,f(e))$. It is well known (see [2]) that $$(2.10) b = \varphi(e, c_1, \ldots, c_m) a^{s+1} \text{ and } b' = \psi(e', c'_1, \ldots, c'_m) a'^{s+1}$$ Now we will prove that corollary 2 is true. Since f(e) is the unit element in (G', .) from (1.9) we obtain that fis a homomorphism of binary groups, and from (1.10) we have $$f \circ \alpha = \alpha' \circ f$$. $f{\circ}lpha=lpha'{\circ}f$. From this equality, (2.3) and (2.8) we can write $$f\circ eta = f\circ \gamma \circ lpha = \gamma' \circ f\circ lpha = \gamma' \circ lpha \circ f = eta' \circ f$$ Hence (2.6) yield. Now, we will show that (2.7) is true. Indeed, from our hypotheses it is sufficient to prove that $$f(b) = \Psi(f(e), f(e), \ldots, f(e))$$ since f(e) = e' is the unit element in (G', .) and using (1.4) and (1.3), we obtain $$\Psi(f(e), f(e), \ldots, f(e)) = \psi_{s+1}(f(e), \gamma'(f(e), \ldots, \gamma'^{n} f(e), c'_{1}, \ldots, c'_{m})) = \psi(f(e), c'_{1}, c'_{2}, \ldots, c'_{m})a'^{s+1}$$ Because f is homomorphism of binary groups, from (2.10), (2.5) and (2.9) we have I. COROVEI and V. POP $$f(b) = f(\varphi(e, c_1, \ldots, c_m)a^{s+1}) = f(\varphi(e, c_1, \ldots, c_m))f(a^{s+1}) =$$ $$= \psi(f(e), c'_1, \ldots, c'_m)a'^{s+1}$$ Using (2.10) we obtain f(b) = b'. Therefore (2.7) yield and from Corollary 2 we have that f is a homomorphism of n+1-groups (G, Φ) and (G', Ψ). THEOREM II. If $f\colon (G,\;\Phi) o (G',\;\Psi)$ is a homomorphism of n+1groups and relation (2.8) holds and there exists $e \in G$ such that a number to me volume to the angular of a profit was blowner $$f(\varphi(e, \ldots, e)) = \psi(f(e), \ldots, f(e))$$ then f is a homomorphism of m+1-groups. Proof. We do same reduction as in Theorem I. Since f is a homomorphism of n + 1-groups it follows from Theorem 2 that f is a homomorphism of binary groups and relations (2.6) and (2.7) are verified. Using Corollary 1 it is sufficient to show that (2.4) is true. Indeed, from (1.8) and (2.8) we have $$f \circ \alpha = f \circ \gamma^{-1} \circ \beta = \gamma'^{-1} \circ f \circ \beta = \gamma'^{-1} \circ \beta' \circ f = \alpha' \circ f$$ Thus proofs of Theorem 2 is complete. From Theorem 1 follows Lemma 4 from [3]. Corollary 3. If $f: G \to G'$ is a homomorphism of m + 1-groups and relation (2.8) and $f(C_i) = C_i$, i = 1, 2, ..., n are true then f is a homomorphism of n + 1-groups. 3. Definition 1. The polyadic groups $(G, \varphi), (G, \Phi)$ are called simultaneous reducible if there exists a same binary group operation on G such that $$(G, \phi) \in \text{Ext}(G, \cdot)$$ and $(G, \Phi) \in \text{Ext}(G, \cdot)$ $(G, \varphi) \in \text{Ext}(G, \cdot)$ and $(G, \Phi) \in \text{Ext}(G, \cdot)$ It is known that the polyadic groups (\tilde{G}, φ) and (\tilde{G}, Φ) are simultaneous reducible iff there exists an element $e \in G$ such that neous reducible in there exists an element $$v \in G$$ such that $m-2$ (3.1) $\varphi(x, e, e_{\varphi}, y) = \Phi(x, e, e_{\Phi}, y), \quad \forall x, y \in G.$ Suppose that the polyadic groups (G, φ) and (G, Φ) are simultaneous reducible and (G', ψ) and (G', Ψ) are simultaneous reducible too and relation (3.1) is verified. It is known that if the polyadic groups (G', ψ) and (G', Ψ) verify an analogous relation with (3.1) then we have analogous relation with (3.1) then we have $$(3.2) \quad \psi(x, z, z_{\Psi}, y) = \Psi(x, z, z_{\Psi}, y) , \quad \forall x, y, z \in G'$$ We can choose in (3.2) z = f(e) = e'. From our hypothesis we can write that $$(G', \Phi) = \operatorname{Ext}_{\gamma_{m-1}}^{s} (G, \varphi) \text{ and } (G', \Psi') = \operatorname{Ext}_{\gamma', m-1}^{s} (G, \psi)$$ where $$v=arphi(e, e_{arphi}); \quad \gamma=\Phi(e, \varphi(e_{arphi}, e, e_{arphi}), e, e_{arphi})$$ and $$v' = \psi(e', e_{\varphi}); \quad \gamma' = \Psi(e', \psi(e_{\Psi}, e', x, e'), e' e_{\Psi}).$$ Corollary 4. If the mapping $f: G \to G'$ is a homomorphism of m+1-groups and the relation is verified, then f is homomorphism of n + 1-groups (G, Φ) and (G', Ψ) . From Theorem 1 is sufficient to show that (2.9) is true. Relation (2.9) becomes, a shall a stroithise the following differ of fourth one $$\psi(e',\ldots,e',f(v))=\psi(e',\ldots,e',v')$$ Therefore f(v) = v' or ψ (e', $f(e_{\varphi})$) $= \psi$ (e', e'_{Ψ}) But $f(e_{\varphi}) = e_{\Psi}'$. Indeed, since f is a homomorphism of m+1-groups we obtain $f(\varphi(x, e, \ldots, e, e_{\varphi})) = f(x) = \psi(f(x)e', \ldots$ $$\dots, e'f(e_{\varphi})) = \psi(f(x), e', \dots, e', e'_{\varphi}).$$ Hence $f(e_{\varphi}) = e'_{\psi}$. This completes the proof. ## REFERENCES THE PROPERTY OF - 1. I. Corovei and Purdea I., Relations between the homomorphisms of n-groups and the homomorphisms of their reduces, Math., 25(48) (1983), 131-135 - 2. Corovei I. and Purdea I. The reduction of an m + 1-group and its extensions to the same group. "Babes-Bolyai" University Fac. Math. Phys. Seminar of Algebra Preprint no. 5, 1988, pp. 63-68. - 3. Dudek, W. A., Michalski J., On a generalizations of Hosszú Theorem Demonstratic Math. V XV (1982), 783-805 - 4. Hosszu V., On the explicit form of n-group operations. Bibl. Math. Debrecen 10 (1963). h(g(88-92,(g))) + (X - 1,(g(y) - y(y)) - (2g(y-4) - 3y) - f(x,y-1) - y(y) Received 10.XII. 1989 Institutul Politehnic Catedra de matematică 3400 Cluj-Napoca, România for all as war, I want X atta, X t. La. at - J. Anat. go. | J. Taffe annual at 112