Friday :

Bings H STATE OF STA L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION, Tome 19, Nº 1, 1996, pp. 45-48 , a | | | | | |

ON THE CONVERGENCE OF A CLASS + OF ITERATIVE METHODS IN FRECHET SPACES

(A + C(A) W (C.A) (A SEVER GROZE W | - 1) + 1 Y (Gluj-Napoca)

The De Mill you will be water In paper [1], a class of iterative methods for solving the operatorial equation

$$(1) P(x) = 0$$

is given, where $P:X\to X$ is a continuous nonlinear operator, X being Fréchet space.

The goal of this paper is the improving of the rapidity of convergence of this method. For this purpose, equation (1) will be written

(1')
$$P(x) = x - F(x) = 8$$

and we consider the method given by the algorithm

(2)
$$x_{n+1} = x_n - \wedge_n P(x_n) - \wedge_n (I + aR_n)^{-1} R_n P(x_n)$$
 where $x_n = R_n$

where $a \in \mathbb{R}$, $\Lambda_s = [x_s, u_s; P]^{-1}$ is the inverse of the first order divided difference of operator P in the node x_s , $u_s = F(x_s)$ and

$$R_n = [\, x_n, \, u_n, \, \, v_n \, \, ; \, P \,] \, \overline{\wedge}_{\, n} P(u_n) \, \wedge_{\, n}$$

having $v_n = F(u_n)$, $[x_n, u_n, v_n; P]$ is the second order divided difference of P in nodes v_n , u_n , v_n , $\overline{\wedge}_n = [u_n, v_n, P]^{-1}$ the inverse of the first order divided difference of operator P in nodes u_n , v_n , $\overline{1}$ being the identical operator of the space.

In what follows, we shall denote by |x| (the quasinorm of an element x of space X, defined by a distance d invariant to translation, i.e.

)] $x | (=d(x, 0)[2], y_{2\lambda} > 1|_{0^{\beta} = x^{1/2}} | (1) |_{0^{\gamma} =$

THEOREM. Suppose that a nod $x_0 \in X$ and the constants $\eta_0 > 0$, B > 0, M > 0 and M > 0 exists, so that;

- 1.)| $P(x_0)$ |($\leq \eta_0$;
- 2. for any x', x'', x''', $x^{IV} \in S(x_0, r)$ the following boundings
- (a))| $[x', x''; P]^{-1}$ |($\leq B$
 - (b))| x', x''; F] |($\leqslant K$;

(c))]
$$x', x'', x'''; P | (\leq M ;$$

(d))|
$$[x', x'', x'''; P)] - [x'', x''', x^{IV}; P]$$
 |($\leq N$) | $x' - x^{IV}$ |(;

hold:

3.
$$E_0 h_0 < 1$$
 where

$$\begin{split} 3. \ E_0 h_0 < 1 \ where \\ E_0^2 = \{ [\mid 1+a \mid (1+h_0)+1] \ (1-\mid a \mid h_0) + \frac{1}{k} \ (1+\mid 1+a \mid h_0] \} / (1-\mid a \mid h_0)^2 + \\ + \frac{N[1+(1-\mid a \mid) h_0^2 [h_0+(2+k^2) \ (1-\mid a \mid h_0)}{BM^2 K (\ 1-\mid a \mid h_0) (1-\mid a \mid h_0)^2} \\ h_0 = B^2 \ MK \ \gamma_{0}, \quad |a|h_0 < 1, \end{split}$$

then, in the ball $S(x_0, r)$ where $r = (1 + k)\eta_0 + K^2L$, and

$$L = B\eta_0 + \frac{1 + (1 - |a|)h_0}{1 - |a|h_0} \sum_{n=0}^{\infty} (E_0 h_0)^{3^n - 1},$$

equation (1) has in S one and only one solution, which is the limit of the sequence (x_n) generated by algorithm (2), the rapidity of convergence being characterized by the inequality

(3)
$$|x_n - x^*| (\leq (E_0 h_0)^{3^n - 1} L.$$

Proof. We note that $u_n, v_n \in S(x_0, r)$. Indeed, from the hypothesis we get

$$\begin{array}{c|c})|\;x_{0}-u_{0}\;|\;(=)\;|\;x_{0}-F(x_{0})\;|)(\;=\;)\;|P(x_{0})\;|(\;\leqslant\;\eta_{0}<\;r\\)|\;x_{0}-v_{0}\;|\;(=)|\;x_{0}-F(u_{0})\;|(=)|\;x_{0}+F(x_{0})\;-\;[x_{0},\;u_{0}\;;F]\;(x_{0}-u_{0})\;|(\;\leqslant\;(K+1)\eta_{0}<\;r. \end{array}$$

Based on conditions 1 and 2 we get

$$\begin{array}{c})|\,P(u_0)\,|\,(=)\,|\,u_0-F(u_0)\,|_{\mathfrak{t}}=\\ =)\,|[\,x_0,\,u_0\,]\,;\,F\,]\,(u_0-x_0)\,|(\,\leqslant K\,\,\eta_0\,;\\)\,|\,P(v_0)\,|\,(=)|\,v_0-F(v_0)\,|(\,=)|\,F(u_0)-F_0)\,|\,(\,\leqslant\,\\ \leqslant\,)\,|[\,u_0,\,v_0\,;\,F\,]\,|\,(.)\,|\,u_0-v_0\,|\,(\,\leqslant\,k^2\,\,\eta_0.\\ \end{array}$$
 From conditions 1, 2 and 3 it also results

so the operator $H = (I + aR_0)^{-1}$ exists and

$$) |H| (\leq \frac{1}{1 - |a| h_0}, |A| + |A| +$$

It results that the approximate x_1 can be computed with the help of algorithm (2) and that

$$)|\;x_{1}-x_{0}\,|(\leqslant\frac{B\eta_{0}}{1-|\;a\,|\;h_{0}}\;[1+(\;1-|\;a\,|)h_{0}]\leqslant\;r$$

so $x_1 \in S$.

We show that, for any x, conditions 1-3 of the theorem are satisfied. Indeed, taking into account the formula

$$P(x_1) = (1+a)(I+aR_0)^{-1} R_0 R_0 P(x_0) + [x_0, u_0, v_0; P] \wedge_0$$

$$[(I+aR_0)^{-1} R_0 P(x_0) - [x_0, u_0, v_0; P | (x_0-v_0) \wedge_{-1} P(u_0)] \\ \wedge_0 (I+aR_0)^{-1} [I+(1+a)R_0] P(x_0) + [x_1, x_0, u_0, v_0; P] \\ (x_1-v_0)(x_1-u_0)(x_1-x_0)$$

and the evaluations

$$|x_1-x_0| (\leqslant T[1+(1-|a|h_0], \ |x_1-u_0|) \leqslant T[1+(1-|a|)h_0], \ |x_1-v_0| \leqslant T[h_0+(2+k^2)(1-|a|h_0)],$$

where
$$T = \frac{\beta \eta_0}{1 - |a| h_0}$$
 we get

)|
$$P(x_1)$$
 | ($\leqslant (E_0 h_0)^2 \eta_0 = \eta_1 < \eta_0$

so condition 1 is satisfied

Conditions 2 are, obviously, satisfied.

Condition 3 is verified setting $h_1 = \text{BMK } \eta_1$ and taking into account that $h_1 < B^2MK$ $\eta_0 = h_0$, and it results $E_1 < E_0$ and $E_1h_1 < E_0h_0$. Using the induction, we show that any approximation $x_n \in S(x_0, r)$ can be built with the help of (2) and we get

$$(4); \qquad |P(x_n)| (\leqslant \eta_n)$$

$$|P(u_n)| (\leqslant K \eta_n)$$

$$|P(v_n)| (\leqslant K^2 \eta_n)$$

$$|X_{n+1} - x_n| (\le \frac{B\eta_n}{1 - |a|h_n} [1 + (1 - |a|)h_n]$$

(5):
$$|x_{n+1} - u_n| \le \frac{k B \eta_n}{1 - |a| h_n} [1 + (1 - |a|) h_n]$$

$$||x_{n+1} - v_n|| \le \frac{B\eta_n}{1 - |a| h_n} [h_n + (2 + k^2)(1 - |a| h)_n]$$

with $u_n, v_n \in S(x_0, r)$ and

)
$$|P(x_{n+1}|(\leq (E_n h_n)^2 \eta_n = \eta_{n+1})|$$

0.013

Beenise grown of the plantaceupe and half sthese M

$$h_{\beta}=B^{2}~MK~\gamma_{n_{\parallel}}\leqslantrac{1}{E_{0}}~(E_{0}~h_{n-1})^{3}$$
 sults

it results

(7)
$$h_n \leq \frac{1}{E_0} (E_0 h_0)^{3^n}$$
(8)
$$\eta_{n+1} \leq (E_0 h_0)^{3^{n+1}-1} \eta_0.$$
We get, then

$$) \mid x_{n+1} - x_n \mid (\leq \frac{B \eta_0 [1 + (1 - |a|) h_0}{1 - |a| h_0} (E_0 h_0)^{3^n - 1})$$

and so

$$(9) \qquad) | \ x_{n+\nu} - x_n | \ (\leq \frac{B \eta_0 \left[1 + (1 - |a| h_0)}{1 - |a| h_0} (E_0 h_0)^{3^n - 1} \sum_{k=1}^p (E_0 h_0)^{3^n (3^{k-1} - 1)}.$$

The space X being complete, it results that there exists $\lim_{n \to \infty} \ x_n = x^*$

$$\lim_{n\to\infty} x_n = x^*$$

If in (9) we put $p \to \infty$ we obtain the inequality (3). The fact that $P(x^*) = 0$ results from (6), taking into account (8) and the continuity

of P.

To prove the uniqueness of x^* , suppose that there exists a solution $\tilde{x} \neq x^*$ of the equation (1), so $P(\tilde{x}) = 8$.

We have, then $|x_n - \tilde{x}| (=) |[x_n, \tilde{x}; P]^{-1}[x_n, \tilde{x}; P](x_n - \tilde{x})| (\leq x_n) ||x_n - \tilde{x}|| (=) ||x_n - \tilde{x}|| (=)$

$$\begin{array}{l}) \, |x_n \, - \, \tilde{x} \, | \, (=) \, | \, [\, x_n, \, \tilde{x} \, ; \, P \,]^{-1} [\, x_n, \, \tilde{x} \, ; \, P \,] \, (\, x_n \, - \, \tilde{x}) \, \, | \, (\, \leqslant \, B) \, | \, P(x_n) \, | \, (\, \leqslant \, B(E_0 h_0)^{\gamma^n - 1} \, \eta_0, \,) \\ \end{array}$$

so $\lim_{x_n} = \tilde{x}$ and so $\tilde{x} = x^*$. And $\tilde{x} = x^*$

Remark. In the case of a Banach space, an analogous theorem has been proved by G. Goldner [3]. In this case, evaluations even for the third order of divided differences of P are demanded.

REFERENCES

- 1. Groze, S. A Class of Iterative Methods in Fréchet Spaces. Research Seminars, Preprint no. 5, 1987, pp. 28-35.
- Collatz, L. Funktionalanulysis und Numeriche Matematik, Springer, Verlag Berlin,
- Goldner, G. Asupra convergenței unei clase de metode iterative în spații Banach, Anal. St. ale Univ. Iași, Matematica, Tom XV, 1969, fasc. 1, pp. 187-190.

Received 15.XII.1989

University of Cluj-Napoca Faculty of Mathemat 3400 Cluj-Napoca România Faculty of Mathematics