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The purpose of this paper is to establish some fundamental théorems
for linear integer and linear rational inequalities. In this paper we shall
use the following symbols : B ,

N = the set of natural numbers ; N* — N 10} 5

Z = the set of integer numbers; Z* = Z A0} ;

@ = the set of rational numbers ; @* = @\ {0} ; N

@. = the set of nonnegative rational numbers ; Q% = @\ {&}.

Let m, n € N*. By M,,..(Z) we denote the set of m x n matrices
Wwhich elements are integer numbers and by M,,.,(@), the set of m X n ma-
trices which elements are rational numbers.

THEOREM 1. th’ any given matriz A c MynlZ), the systems

=
I {Am z0,
rxelZ®
and '
. s N T . - 4 -- -
(II) {A y y Ou
y e N»

Possess solutions 2° and y° satisfying (A, a°) + ¥1 > 0, where AT = (ay,...
0L, @)

Proof. The proof is by induction on p. For p == 1, two cases are
possible : v ' - R 1T i Sl - el SHRET

1) 4, =0,. Then #° = 0, is a solution of the system (I), #° =1
a solution of the system (IX)and (4,, 2> ‘P =0-+1=1>0.

2) A, # 0,. Because Ay # 0,y we have. (4, A== PX a?,} 0.

L i = : W o j=1

Since 4, € Z", we get that @ = A, is a solution of the system (I), ¢° =
= 0, a solution of the system (II) and {(4,, %) - Y9 > 0.

Therefore, for p = 1 the conclusion of the theorem is true. b
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Now assume that the theorem is true for a matrix 4 of p rows
and proceed to prove it for a matrix

'Al
-A_ — [ -A. ] . -‘-4-- .
Azz+1 »
'AZ’+1
of p -+ 1 rows, where 4, = (ay, ..., 4y )€ Z" for all ie{l, ..., p 4 1}.
By applying the theorem to A, we have a° ez y'e N? satisfying
(1) Az"2 0,,
(2) ATy = 0,, _
(3) Ay 2 -+ > 0

Two cases are possible : CApiny 2°) 2 0 or (4,,,, @) <0. If <4,,,,
%)z 0, taking 7 =(#%°% 0). we have Ax*z 0,, §e NP, A7 =0, and
<4, #°) 4+ 38 > 0, which states the conclusion of the theorem for 4.

Let now (4, #°> < 0. Then taking :

4) P = — <A:n+1’ .’I?0>, QJ = <Aj: m0> (.7 — 1’ Qg ',p)a
we have
(5) te N* and ¢;e N Gdimmedsyeat- 20!
Let
B, td, + /20
(6) B=1 |= .
. -Bp 14, + GApis
For all je{1,...,p} we have
(7) {(Bj, 2% = {t4; 4 q,4,,,, @) = 1q; — ;1 = 0.

By applying the theorem to B, we get v =(v,, .. 9 0,) €Z% U= (U, ...
-y Uy), % € NP satisfying : ;

(8) Bv z 0,, BTy = ¢, By v u, > 0.

Let '
(9) U = (tu, o, + ... + @us).
Because t € N%, ¢, e N (j= 1, ..., p) and v € N?, we have
(10) % € Nr+l,
and '

ATa=14" u 4 A7, - )f Q).

Then h
(11). A%G = By = 0,.
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Let w = to + <4,.,, v> 29 Because t ¢ N¥,veZ" A,,,eZ" and a° eZ",
it follows that = ;

(12) w e 7",
We have

(13) <A11+17 w) = t<Ap+1) D> + <Ap+17 /D><A’77+17 x0> = <An+17 ’U>(t~t) :0-

and

<AJ‘7 w) = t<AJ‘7 v) "‘ <Ap=ll’ @><Ah .’I)O> Y t<A.7'7 1)> + qj<A~1z+17 ©).

From (5) we get 4; = % B; —%A,H,l(j =1, ...,n)

Henee

(14“) (Ajy ’Ll)): t(%Bh ’U> L t% <Ap+1’ ’0> _l‘ QJ<A)J+17 /D> 5T <B.77 'D>

forall j=1, ...,n
From (14) and (13) it results that
- A4
(15) ity A0 [ . ] . [ﬁB_”]; 0,.,
<'Aj)-'r17 w> O
Finally, from (14) and (8) we have
(16) Ay wy o uy = (By, vy + uy >0.

Relations (10), (11), (12), (15) and (16) state the theorem for 4.
Likewise we can prove :

THROREM 17. For any given matriz A € M, the system
i/ b 3 Y

(II) szoﬁ
r e Qn
and )
(II)I Aty o On
ye@r

possess solutions 2° and ¢° satisfying <(4,, 29y 4 40 > 0, where A? =
= (all, ey aln)'

TarorEM 2. For any given matriz A e Myyi(Z) the systems (I) and
(LI) possess solutions 2° and y° satisfying Ax® 4 0 > 0,.

Proof. In theorem 1 the row A, played a special role. By renum-
bering the rows of 4, any other row, say 4, can play the same role. Hence,
by theorem 1, forall e {1, ..., P} there exist «' € Z" and y' € N* such
that ‘

(17) Awt 2 0, ATy = 0,, 4,0 | 4 > 0.
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Consider a° = &' 4~ ... 4~ #? and #° = y* - ... 4- 4?. Obviously, we
have #° ¢ Z* and »° € N?. From (17) we obtain

(18) Aa®= Aa' | ... Aa? 20, Ay = Ayl | ... - Ay — 0,

) b :
Forall te {1, ..., p} we have <4, 2°) | 4= (4;, #°>+ 4 +4- Y <4y, @) -
keml
ki

b4 . X
+ Y 9 =<4y, &> 4 51 >0. Hence
k=1

ki

(19) Az - ¢° > 0,

As 2 e Z", 4° € N?, relations (18) and (19) show that «° is a solution
of the system (I), »° a solution of the system (II), and Az 4+ y°> 0.
Likewise we can prove :

THEOREM 2’ For any given matric A € M, .(Q), the system (I') and
(II') possess solution z° and y° satisfying Aa® 4 4° > 0,
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