L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION, Tome 19, N° 1, 1990, pp. 49-52

LINEAR INTEGER AND LINEAR RATIONAL INEQUALITIES

LIANA LUPSA (Cluj-Napoca)

7.

The purpose of this paper is to establish some fundamental theorems for linear integer and linear rational inequalities. In this paper we shall use the following symbols:

N= the set of natural numbers; $N^*=N\setminus\{0\}$;

Taragle of the grant of a salida brother change by a sublishing seasonable court

Z =the set of integer numbers; $Z^* = Z \setminus \{0\}$;

Q =the set of rational numbers ; $Q^* = Q \setminus \{0\}$;

 $Q_+= ext{the set of nonnegative rational numbers}; \; Q_+^*=Q_+ackslash\{0\}.$

Let $m, n \in N^*$. By $M_{m \times n}(Z)$ we denote the set of $m \times n$ matrices which elements are integer numbers and by $M_{m\times n}(Q)$, the set of $m\times n$ matrices which elements are rational numbers.

THEOREM 1. For any given matrix $A \in M_{p \times n}(Z)$, the systems

(I)
$$\begin{cases} Ax \geqslant 0_p \\ x \in Z^n \end{cases}$$

possess solutions x^0 and y^0 satisfying $\langle A_1, x^0 \rangle + y_1^0 > 0$, where $A_1^T = (a_{11},...$ α_{1n}).

Proof. The proof is by induction on p. For p = 1, two cases are ble:

1) $A_1 = 0_n$. Then $x^0 = 0_n$ is a solution of the system (I), $y^0 = 1$ a solution of the system (II) and $\langle A_1, x^0 \rangle + y_1^0 = 0 + 1 = 1 > 0$.

2) $A_1 \neq 0_n$. Because $A_1 \neq 0_n$, we have $\langle A_1, A_1 \rangle = \sum_{j=1}^n a_{1j}^2 > 0$. Since $A_1 \in \mathbb{Z}^n$, we get that $x^0 = A_1$ is a solution of the system (I), $y^0 = A_1 = A_1$.

= 0, a solution of the system (II) and $\langle A_1, x^0 \rangle + y_1^0 > 0$.

Therefore, for p = 1 the conclusion of the theorem is true.

2

Now assume that the theorem is true for a matrix A of p rows and proceed to prove it for a matrix

$$ar{A} = \left[egin{array}{c} A \ A_{p+1} \end{array}
ight] = \left[egin{array}{c} A_1 \ dots \ A_p \ A_{p+1} \end{array}
ight]$$

of p+1 rows, where $A_i=(a_{i1},\,\ldots,\,a_{in})^T\!\in\! Z^n$ for all $i\in\{1,\,\ldots,\,p+1\}$. By applying the theorem to A, we have $x^0 \in \mathbb{Z}^n$, $y^0 \in \mathbb{N}^p$ satisfying

$$(1) Ax^0 \geqslant 0_n,$$

$$A^T y^0 = 0_n,$$

$$\langle A_1, x^0 \rangle + y_1^0 > 0$$

Two cases are possible: $\langle A_{p+1}, x^0 \rangle \geqslant 0$ or $\langle A_{p+1}, x^0 \rangle \langle 0$. If $\langle A_{p+1}, x^0 \rangle \geqslant 0$, taking $\bar{y} = (y^0, 0)$ we have $\bar{A}x^0 \geqslant 0_p$, $\bar{y} \in N^{p+1}$, $\bar{A}\bar{y} = 0_n$ and $\langle \hat{A}_1, x^0 \rangle + y_1^0 \rangle = 0$, which states the conclusion of the theorem for \bar{A} . Let now $\langle A_{p+1} x^0 \rangle < 0$. Then taking

$$t=-\langle A_{p+1},\, x^0
angle, \quad q_j=\langle A_j,\, x^0
angle \quad (j=1,\,\,\ldots,\,p),$$
 we have

we have

(5)
$$t \in N^* \text{ and } q_j \in N \ \ (j=1,\ldots,p).$$

(6)
$$B = \begin{bmatrix} B_1 \\ \vdots \\ B_p \end{bmatrix} = \begin{bmatrix} tA_1 + q_1A_{p+1} \\ \vdots \\ tA_p + q_pA_{p+1} \end{bmatrix}$$

For all $j \in \{1, \ldots, p\}$ we have

(7)
$$\langle B_j, x^0 \rangle = \langle tA_j + q_j A_{p+1}, x^0 \rangle = tq_j - q_j t = 0.$$

By applying the theorem to B, we get $v=(v_1,\ldots,v_n)\in Z^n,\ u=(u_1,\ldots,u_n)$ $\ldots, u_p), u \in N^p$ satisfying:

(8)
$$Bv \ge 0_p, B^T u = 0_p, B_1 v + u_1 > 0.$$

amin't Let by the so a feet the action in high in the hand a mailine a sensor

$$\bar{u}=(tu,q_1u_1+\ldots+q_pu_p).$$

(9) $\bar{u}=(tu,q_1u_1+\ldots+q_pu_p).$ Because $t\in N^*,\ q_j\in N\ (\ j=1,\ \ldots,p)\ \ {\rm and}\ u\in N^p,\ {\rm we\ have}$

(10) (at) many off in
$$\overline{u} \in N^{p+1}$$
, 0 and $\overline{u} \in N^{p+1}$ and

$$ar{A}^Tar{u}\!=\!tA^T\,u\,+\,A^T_{p+1}\cdot\sum_{j=1}^p\,q_ju_j.$$
 Then

on a countries of the system (11) and (4, w) - g > 0.

(11). Approximate
$$\bar{A}^T\bar{u}=B^Tu=0_n$$
.

Let $w = tv + \langle A_{p+1}, v \rangle \cdot x^0$. Because $t \in N^*$, $v \in Z^n$, $A_{p+1} \in Z^n$ and $x^0 \in Z^n$, it follows that have at Z and we A from (17) we obtain a

(12)
$$w \in Z^n$$
.

(13)
$$\langle A_{p+1}, w \rangle = t \langle A_{p+1}, v \rangle + \langle A_{p+1}, v \rangle \langle A_{p+1}, x^0 \rangle = \langle A_{p+1}, v \rangle \langle t-t \rangle = 0.$$

$$\langle A_j,w\rangle=t\langle A_j,v\rangle+\langle A_{p+1},v\rangle\langle A_j,x^0\rangle=t\langle A_j,v\rangle+q_j\langle A_{p+1},v\rangle.$$

From (5) we get
$$A_j = \frac{1}{t}B$$
, $-\frac{q_j}{t}A_{p+1}(j=1,\ldots,n)$.

Hence "Mk bas (II) maleys out to notifule a Syn (I) makeys salt dos

(14)
$$\langle A_j, w \rangle = t \langle \frac{1}{t} B_j, v \rangle - t \frac{q_j}{t} \langle A_{p+1}, v \rangle + q_j \langle A_{p+1}, v \rangle = \langle B_j, v \rangle$$

for all $j = 1, \ldots, n$
From (14) and (13) it results that

From (14) and (13) it results that

(15)
$$\bar{A}w = \begin{bmatrix} Aw \\ \langle A_{p+1}, w \rangle \end{bmatrix} = \begin{bmatrix} Bv \\ 0 \end{bmatrix} \geqslant 0_{p+1}$$

Finally, from (14) and (8) we have

(16)
$$\langle \bar{A}_1,w \rangle + u_1 = \langle B_1,v \rangle + u_1 > 0.$$

Relations (10), (11), (12), (15) and (16) state the theorem for \vec{A} . Likewise we can prove:

THEOREM 1'. For any given matrix $A \in M_{p \times n}(Q)$, the system

(I')
$$\begin{cases} Ax \geqslant 0_{p} \\ x \in Q^{n} \end{cases}$$
 and

and

(II)'
$$\begin{cases} A^t \, y = 0_n \\ y \in Q^p \end{cases}$$

possess solutions x^0 and y^0 satisfying $\langle A_1, x^0 \rangle + y_1^0 > 0$, where $A_1^T =$ $=(a_{11},\ldots,a_{1n}).$

Theorem 2. For any given matrix $A \in M_{p \times n}(Z)$ the systems (I) and (II) possess solutions x^0 and y^0 satisfying $Ax^0 + y^0 > 0_n$.

Proof. In theorem 1 the row A_1 played a special role. By renumbering the rows of A, any other row, say A_i , can play the same role. Hence, by theorem 1, for all $i \in \{1, \ldots, p\}$ there exist $x^i \in Z^n$ and $y^i \in N^p$ such that

(17)
$$Ax^{i} \geqslant 0_{p}, A^{T}y^{i} = 0_{n}, A_{i}x^{i} + y_{i}^{i} > 0.$$

DUTE

Consider $x^0 = x^1 + \ldots + x^p$ and $y^0 = y^1 + \ldots + y^p$. Obviously, we have $x^0 \in Z^n$ and $y^0 \in N^p$. From (17) we obtain

(18)
$$Ax^0 = Ax^1 + \dots + Ax^p \ge 0_p$$
, $Ay^0 = Ay^1 + \dots + Ay^p = 0_n$

For all $i \in \{1, \ldots, p\}$ we have $\langle A_i, x^0 \rangle + y_i^0 = \langle A_i, x^i \rangle + y_i^i + \sum_{\substack{k=1 \ k \neq i}}^p \langle A_i, x^k \rangle$

$$+\sum\limits_{\substack{k=1\k

i}}^p y_i^k \geqslant \langle A_i,\, x^i
angle + y_i^i > 0.$$
 Hence

$$(19) Ax^0 + y^0 > 0_p.$$

 $Ax^{0} + y^{0} > 0_{x^{0}}$ 1 = 1. Ing. of (6) more As $x^0 \in \mathbb{Z}^n$, $y^0 \in \mathbb{N}^p$, relations (18) and (19) show that x^0 is a solution of the system (I), y^0 a solution of the system (II), and $Ax^0 + y^0 > 0$. Likewise we can prove:

THEOREM 2' For any given matrix $A \in M_{p \times n}(Q)$, the system (I') and (II') possess solution x^0 and y^0 satisfying $Ax^0 + y^0 > 0_p$.

REFERENCE

1. Mangasarian O. L., Nonlinear programming. New York, McGraw-Hill Book Company, 1969. (df 411 (0)] [(0)

Received 20,XII,1989

4.1 28 37

University of | Cluj-Napoca Faculty of Mathematics .0 < 14 1 (2 M) = 14 (14 3400 Cluj-Napoca (10.1)

Relations (10), (11), (12); (15); and (16) state the theorem for J. bilitary are early proved THEREBYA I . I've dust given matrify it will. I'v. 1911 the system

CB

 $H_0 \neq \Pi_1$, we $A_1 = \{B_1, \dots, B_n\}$

passess solutions x^0 and y^0 satisfying $\langle A_1, x^0 \rangle + y \langle 0, \text{ where } M \rangle = (a_{21}, \dots, a_{1n}).$

Through 25 for any given matches $A \in \mathcal{A}_{c-1}(\mathbb{Z})$ lie epsishes $\langle I \rangle$ and $d \rangle$ and $d \rangle$ with $d \rangle$ $d \rangle$

Proof. In theorem I the raw A, played a special role, By remanburing the rows of A, any other row, say A, can play the same role. Hencelby theorem 1, for all 1 c [[... e . h pl where relief she | Z" and y' e X" ouch

 $0 < |y - |w_i\rangle, \ \ _i, 0 = |y|^{-1}, \ \ _{i,0} 0 \leqslant |w|,$