MATHEMATICA — RISV UL D’ANALYSIE NUMERIQUE
ET DE THEORIE DJ L’APPROXIMATION

I’ANALYSE N UMERIQUE ET LA THEORIE DE L’APPROXIMATION
Tome 19, N° 2, 1990, PP 93 —104%

APPROXIMATE SET FUNCTION MEASURABILITY
DECOMPOSITION AND RANGE UNION INCLUSION

WILLIAM D. I.. APPLING

Abstraet. Suppose that U is a set, /' is a field of subsets of U, »(F)is
the set of all functions from # into exp([R), AB(R)(F) is the set of all rea]-
valued bounded finitely additive functions defined on # and AB(R)(F)+
is the set of all nonnegative-valued elements of AB(R)(F). For each 1)
in AB(R)(F)*, let M denote the set of all elements of »(F) that are
p-measurable (see “Fields of Sets, Set Functions, Set Function Integrals
and Finite Additivity”, Internat, J. Math. & Math. Sei., vol. 7, no. 2,
1984, pp. 209—233), and if W < R, let M,(W) denote the set; of all ele-
ments of M, with range union = W. Given o in *F), a positive integer
7 and a sequence {4}, of elements of A B(R)(F)*, the measurability of

o with respect to min{y,, ..., Ua} VS. the respective measurability with

respect to each py, &k = 1, . -y, of each of a certain sequence of ‘‘decompo-
sition elements’ {ogios for o« is discussed.

AMS (MOS) SUBJRCT CLASSIFICATION : Primary 28A25 ; secondary
461599.

KEY WORDS AND PHRASES Set function, integral, measurability,
decomposition characterization.

1. Introduetion. Suppose that U is a set, I is a field of subsets of
U, r(F) is the set of all funetions from # into exp(R), AB(R)(F) is the set
of all real-valued bounded finitely additive functions defined on # and
AB(R)(F)* is the set of all nonnegative-valued elements of AB(R)(F).
For each y in AB(R)(F), let A, denote {n:7nin AB(R )(47), n absolutely
continuous with respect to 1}, M, denote the set of all elements of r(#)
that are y-measurable (see section 2), and it W < R, let M,(W) denote the
set of all elements of M, with range union < W.

In various papers [1 through 3,5 through 137, functions, either
from ¥ into {0, 1} or from I into ex p({0, 1}), henceforth called Zero-one
sef functions, enter nontrivially into such matters as set  function
integrability, absolute continuity and wuniform absolute continuity,
In [7] the following measurability decomposition characterization
theorem wag shown, zero-one set funetions figuring prominently in
the proof :
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THEORE'M 1.A. 1. Suppose that « is in (I, n is @ positive integer
and {‘u,,:}’,f:l s @ sequence of elements of AB(RYFY. The following two
statements are equivalent :

1) If 5 = Smin{lul, ooy Ua} (agatn, sce section 2), then o is in M,

and
2) for each k =1, ..., n, there is ay wn My such that for each I in

"
B, oI) S Y ey(d).
k=1

Now, in our proof in [7] of the above theorem, for each b =1, ... »
and I in I, o,(1) i either «(l) or {0}, so that if @ is in the range union of
oy, and not in the range union of «, then # = 0. The question that we treat
in this paper is how to have a somewhat more particular measurability
decomposition characterization theorem in which the range unions of the
o5 are subsets of the range union of «, except for possibly one closure
element. We prove the following ‘“approximate” analogue of Theorem
1.A.1.; again relying heavily on zero-one set functions :

THEOREM 4.1. Asswme the hypothesis of Theorem 1.A.1, awith, 4
as indicated. Let W denote the range union of «. The following statements
are true. ;

1) Suppose that W is bounded. Then the following statements are
equivalent

a) o 18 tn M, and ,

b)'there' ' is « conttnuous function f from [R™ into IR such that
FOOW U {supWiT) < Wu{supW} and for k=1, ..., n an element oy of
My (WU {supW}) such that o = f(ay, ..., o).

TT9) Suppose that W ois not bounded. Then the Jollowing statements are
equivalent

a) o 28 tn My, and,

0) if 0 << ¢, then there'is a continwous function f from IR™ into R such
that f(W*) = W and for k=1, ..., n an clement oy of My (W) such that tf

B s the funciion with domain B given by
if (L) € flo{d)y ..y oan(d
B(I):{O if o(I) € fleq(I)s o ooy aa(]))

1 otherwise

then

ywwn<a

where I 1s the sum supremwm functional (see section 2).

2. Preliminary. remarks. We begin with a brief discussion of some
basic notions.

If Vis in I", then the statement that D is a subdivision of V means
that D is a finite collection of mutually exclusive gets of # whose unionis V.,

3 imat '
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The statement that # i i
\ 18 a refinement of D, denoted hv F

rd n i o / / | ) : :
meflmslthat for _smwn_e i”of ¥, each of D and £ ig g ,subdivision"o{’ LV <fuﬁl,
éach element of F is a subset of some element of D. . .
N Hwﬂ;ﬂ c;,r tlf.I:lC’-.{il()ll integrals ip_ 1‘:’!1@3 paper shall be refinement-wise limits
ot stat'l;{u:ﬁ)élﬂlgfsg’l’n?' T!.lt}s,‘ il iy a funection from ¥ into exp(R) .then
the h nat Lo1s an integral of « on Vo means that 1 i< in % 7
: ; ‘ / | ! ans that 17 is in », [
fz ‘? JERT ‘*Jllt*? D.i‘ 0 < ¢, then there is a subdivision D of V. sich thab ict‘-
bJI< D, and b is a fuJ;cIuon with domain 7 such that for each I in I
(1) is in e(l), i.e., b is an e-function on %, then : i ’

I3, (D] — K| < ¢;
) !

"‘4 . | . ] /] . . { : | |
K is unique and is denoted variously Dby ga(I ), Bv ete. We refer the
1 i o H . Vi R |

i Lok UL, ] _ v v
reader € 11 i i :
(Iingmlilo t}nrlgl]) Elmfj:l’. dﬁail][ed discussion of this and relafed matters, inclu-
£ goroit’s [14] notion of differential equivalence and o
o 15 oo e g L) 1 . werential equivalence and certain
: (late consequences., We also refer the reader to 91 +
vEH b edite : 3 80 refer the reader to [9] for
qh]; ﬁ:ﬂé;br;lll 1;{!}(‘} hotions, together with their pertinent notations, tlL]a-_tlr we
..L s n E]S pap(;}, such’ as Y -boundedness, sum su premum funetional
um mimum functional ¢, and for certaj ) i
ment inequalities and the ébu %:c’l'uilrll:} 1I1?11, oy le.m }c“[midummm1 B T
them, AT 201 ML ntegral ‘existene s that arise from
m. / gh we also refer the reader 1o [4] at iEE & Mot
T ! _ x e nd ' [97tor the not j
set function meagurahilit all, 1 fon ittt
h asurability, we shall, in section 3, state t} lefinition i
Somewhat streamlined form in t s of zer Bt Eaas aen in
! _ amlined form in terms of zero-one sel, f i
some basic measurability facts. nnctions and. give

3. Absolite continuity a ot i | ‘
. Ab v ity and set funetion: measurabili Tt a'< b
t ! , 3 § wsarabilicy. Tt/ ¢ '
hen we let [a; b] = {z:4 < o < b} L i Sy

contisgiivsi?ﬁft a 1th.eore{n "iwh_ich Is'an accumnlation of some absolute
) fnal singularity integrability pr ies. Fi lofini
cont ! Iy ‘) and integrability properties. First a defini-
—_— J)gftﬂvzz§e,()rz, 3.A.1 (see [9])..11" each of £ and 4 is in 4 B(R)Y(HFY*, then
\(&, 1) denotes the function with domain I given by e i

ME, 7} (V) = sup{gmin{i(l), K'q(I)} 10 < K}I. %

I8

THREOREM 3.A.1 (see [2 9]). S i
‘ ' Ado(8ee [2.9]). Suppose that each o and 3 4
AB(R)IY. Thew' the Jollowing statements are true - 'f : w0

1) Buch, of ME b iagndbt ti by - r
Mot 4?4;;«- ach of ME, ) and) & 1o, ) is an AB(R)(E) and A(E; ©)

mgmmmn—x@wmmuunfa

U

3) If ngmin{i, why then ME, p) == NE, o).



96 W. D. L. Appling 4

4) If o s in'r(F), then the following statements are true (actually, each
is part of « characterization theorem) :
a) If for some M >0, range wnion' o S [0; M), & 48 in Ay,
a(1) (L) ewists and is O, then S'a(I)E(I) exssts and 18 0.

u
b) If for some M > 0, range union o < [— M M, Eis in 4, and

So.(I};.L(I) ewists, then g o(1)E(T) ewists.
J ]

u
We now give, with the aid of zero-one set functions, a somewhat
more condensed definition of set function meagurability than that given
in [4]. First, some preliminary definitions. :

Definition 3.2. If o is in r(F) and W < R, then 8(«, W) denotes the
function with domain F given by
0it () = W
1 otherwise

8(o, WYI) :,{

Definition 3.3. 1f each of « and 3 is in r(#), then p(«, 8) denotes the
function with domain F given by

8a, 3)(T) = Bloy SD)I)-

Definition 3.A.4. (see [Boll]). If p is in A B(R)(F'Y*, then the state-
ment that « is u-measurable means that « is in 7(#) and if p <0 < ¢,
then

Smax{min{au), ¢}, D)

U

exists and, for p <0 < ¢,

SL(&(«, (p; gDe)I) = 0 as min{|pi, g} — oo.

U

Let us note that if p is in AB(R)(F)* « is in 7(F), and range union of
« is bounded, then « ig in M, iff SQ(Y.(I)(LL(I) exists.
U
TuROREM 3.A.2 [4]. If f is o function from RY into R, then f is
continwous iff for each p. in AB(R)(F)" and sequence {a}ioy of elements of
My, f(ay, .. oy) B8 10 M.

TagoreM 3.1. If each of 1 and{ is in AB(RYFY", then M, n My =
= My ond, if C 48 in Ay, then Mos My
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Indication of proof. Suppose that « is in #(#) and P <0< q. Then

max{min{«(l), ¢4, p}n(I) + (1)) exists iff for v — n or
?

max{min{«(l), ¢}, p}v(I) exists. Also,

Tl Q™

max{g I(8(a, rp;qnmm} , mwx{gww, ip; qm)m} <

U

U
<SL(B(“3 (55 a1 + D)) <Sf(i'>‘(ﬂ-, tps f/-fl)’n)(é’) +
U U

+ gfl(;%(a, (v 4O

U

r*\ 5 3 v i
s AL l‘h e Jm.&l asser tion of the 1_;h egremnt 18 an easy cousequence of Theorem
Al and routine considerations of absolute continuity.

LeMMA 3.A1 [5]. If each of § and o s in r(F) and is ¥ -bounded

on U with respect to D, then 3 sy i )
o F,’ : + w 18 Y -bounded on U with respect to D

GB)V) + Gl V) < G0 + o)(V) < L3 + o)(V) < L)V | Li)(V)
80 that |
L(3 + o)(V) — 63+ o)(V) < L3YY) — GBIV + L{o)(V) — Ko)(T).

W b

LrMMa 3.2, If each of ¥ and Z is in (P
> y y A y —b 4 .
respect to D, and for each I in I, V(I)cZ(I ),(th)e’nzj;or 0;;72%6% O@?L Ig itk
! ?
HZ)V) < GY)V) < L(YNV) < LZ)V).

LeMma 3.3. If each of « and s 4
Fvi 3. If e w 8w (), 0 < q, range union
;} Sl)[ ﬂge’ q], range union o = R*, and o s )"_,—bowi—uled on U w@'tgh 7*espgct
y then aw is Y -bounded on U with respect to D and if Q is I or &
3 ?

then for each V in P,
| Qea)(V)]| < gI(e)(V).
THEOREM 3.2. If 4 is in A B(R)F)*, « is i i
) 8.2.17 A i o 18 tn rF), 0 < d 7
union «a < [—q; ql, then the following tu;o statements 02';‘6 6qm‘.vqalzst( e
1) N a(D)u(I) exists, and

u
2) if 0 <e, then there is v in »(F) with range union < [—¢; q] such
that S«((I)p.([) exists and SL((&(a, ) < e.

u 98
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Proof. Tt is obvious that 1) implies,2). ik
Né)wfsup'po.s'e that 2) is true and 0 << ¢. Then there is 3 in #(F) with

range union <|[—g¢; ¢} such that QB(I)@(I) exists and SL(B(«, Ny <

i U
< e/(4q -+ 1). Let B = B(q, 3). Notg that it I is in 7, then [«(1—)}(I) =
< [3(1 — &)J(). Thus

S[meu) — Glpa)])] <

U

< g (Ll — Bl 4 apu)(I) — G(a(l — B)u - afu)()] <

< g [L(o1 — B)u)(d) — G(a(l — s).u»(m»-{—g [L{aBp)(I) — Gatu)(I)] <

U

DO BTy — @31 — BT+ 2(18.?/(@@(1) <

17
< g (L3 — 3Buw)(I) — 63 — 38u)(1)] - 2qe/(4g + 1) <

~

< g [L(3p)(1) — G(3u)(D)] +§ (L —3pu)(I) — G(—3u)D)] | ¢/2 <

U U

< 0 -} 2QSL((3M)(I) 4ef2 < 2qe/(dq - 1) + ¢/2 < e.
U

Therefore SLL(ap)(Ij — G(ap)()] = 0, so that \ a(Du(l) exists,
U &
Therefore 2) implies 1) .
Therefore 1) and 2) are equivalent. Y :.
TrroREM 3.3. If yis in AB(R)(UI)" and o 18 in r({"),
wing lwo stalements are equivalent
1) o s an M,, and |
2) if 0 < ¢, then there is v wn A, such that %]’.(i@(“’ iu)l) < ¢
U ' '

then ‘the follo-

Proof. It is obvious that 1) implies 2). B
Now suppose that 2) is true. Suppose tha:t p <0 < q.‘Lclt 11[]];)
max{|pl, | ¢l}. Suppose that 0 <c. There is v in M, such th

It I is in ¥, then (3(111(1)_,\{1]]111105, q}, v},

L(ple, ) < c

™
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max{min{y, ¢}, pH)(I) < B(«, v)(I), so that gL(B(maX{min{a, qt, p},
1% ! :
max{min{y, ¢}, p})u)(l) < SL(B(a, V)u)d) < e. Furthermore, range union
i
max{min{u, ¢}, p} v maxminfy, ¢}, pl < [—I(; Kjand Sma.x min (1), ()
i
exists. Therefore by Theorem 3.2, gnmr\a{min{a(l), ¢}, pru(d) exists.
@
We now show that for p <0 <g, gL(.B(“’ [p; qp)I)— 0 as
o

min{[p|, ¢} — co. Suppose that ¢ < ¢ and P <0 < ¢ Again, there is v
in M, such that '

= Bla, v) and By = B(v, [p; ¢]). Olealy, if

Let By = B(«, [p; q1), == [ § )
= 1 and £,(1) = 0, then py(I) = 1. Therefore, if I is

Lisin I" and #,(1) =
in ¥, then

Therefore if ¥ is in I, then
LBloy [95 aDu)(V) = L(B,(1 — Byju |- ByBy1 — By)u -k P1BsPar)(V)

<
SL(BI(L — Bo)u)(V) - L( By By(1 — Bl (V) 4= LA B1BaPa (V) < L(Byp)( V) -
LB )(V) - L(Bap) (V). There is p' and ¢" such that p’ <0 < q

and i p < p'<0< ¢ <gq, then S L(Byu)I) < ¢/3, 80 = ‘that
U

\HBts s QD) <3 1 o8 1o = .

U o o
Therefore 2) implies 1).
Therefore 1) and 2) are equivalent.

4. An approximate decomposition theorem. We begin with a lemma
which is an extraction and simplification of the main paits of the proof
of the principal theorem of [7].

Liyma 4.1, Suppose that Pilh—1 18 « sequence of elements of AB(R)(FY
and 2 < n. Then there is o sequence 1Bty of functions from T into {0, 11
such that the following existence and equality assertions hold :

1) For each I in P, S, B =1,

fein1

11) f())' b == I 1, g BA(I)PA(I) - (), and
U
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iii) S B k(p.n, Slnill{p,l, e 5 P ) .
Proof. Suppose that each of £ and »is in A B(R)(I")". Let » = ME, m),
which is A (i, Smin{ £, “fl})- By Theorem 3.A.1,

Smin(&(]) — NI), (I} = 0.
U
There is a function p with domain ¥ such that if Tis in I", then
1 if - < E(L) — M.
BT {3 :ft}:)eg\lrise e -
If D < {U}, then
max (% B(1)p(D), 3} (1 — BONET) — NI < Yrmindi(T) = WD), (D).

D

Therefore we have the following existence and equality
o = ety = — panen) — 1.
U

By Theorem 3.A.1,
0 =S BN,
U

so that, since
A —pE=(@1—BXE— N+ 1= PN

it follows that we have the following existence and equality
S(l— BJE = 2.

We now continue by induction. First, we note that the first para-
graph establishes the conclusion statement of the lemma for the case
n = 2. !

Tieb us now suppose that m is a positive integer > 2 such that for
n = m, the statement of the lemma holds. Suppose that {p,}74! is a se-
quence of elements of AB(R)(K)". -Let

E = MK and = Slnin{P'M LIS} H”i}'

Again, by the first paragraph, there is a function g from F into {0, 1}
such that we have the following existences and equalities

0 :SB(IM(I) and 8(1 — B =
2

Approximate set function measurabilily decomposition
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ie.

0 =S [B(I)anian), ey (T} ] and S(l Bt —

U I

= Mty Snlin{.uu ey Bad) = Mg, Snlin{Hly ooy Bmgg))e

By our inductive assumption there is a seq i i '

/ j ] sumpti lere 1s a sequence {B,17, of functiong f

¥ into {0, 1} such that with respect to {uakiy theﬂéo’n(llitions of the 581111}
clusion of Lemma 4.1 hold. For each % -

=1,...,m, let B}, = Bp, -
fwrn =1 — B. The following are trve ot e A= BPi and let
m+1 n

i) For each I in ¥,y gyl) —| ¥ @(I)Bk(l)]+ 1 — ) =
-1 L

k= k=1
m

= 0| 3 8D |+ (1 — 8y = p) 141 — g1y =1,
ii’)pfor kE=1,...;m —1 and I in By B Du(l) = BU) BT il Iy,
so that \g,;(])w.(l) — 0, and by

U
Theorein 3.A.1, since 0= 6(1)7(1), 0 80 mini, . )1y =
U
= S B(I)Bm(I)Hm(I) :S B;'n(l){im(l), and

iii’) for each V in I, x( Uiy Smin{(ul, ot MH}) (V)= 0E, n)(V)=

o S (1 — B(I)EI) — S BT menl D).
14 124
This establishes the lemma.

Observation 4.1. Tf 2 is in R, » < 0 < s and ¢ is in {0, 1}, thén
emax{min{w, s}, 7} = max{min{ez, s}, 7k
LeMMA 4.2, Suppose that o is in AB(RYFY, o is in o(T) and Jor
each {p, ¢} such thatp < 0 < gq, gmax{min{a(l), q}, p}e(I) ewists and is 0.

. . U
Then o is in M,.
Indication of proof. The integral existence part of the measurability

agsertion is immediate. The remainder of the measurabilit iti
follows from the equations e

Smax{min{a(I),s}, 0}p(l) = 0 = Smax{min{a(]), 0}, 7}p(L), » < 0 § s;
U
we leave the details to the readr:-,r.
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TLoaMA 4.3, Suppose that ¢ is in A B(IR)(I,
o s Aata 5 ] _ i 7 o o ‘I'rS
Sunction from B into {0, 1} such thai g B)e(L) ewists and 15 0. Then By

u

2

v s an r(d) and B is

n M. ; l .
pI)quicat'ion of proof. If I ig in F, o is in y(I) and p < 0 < ¢, then,

by Observation 4.1.
max{min{p(Dx, ¢}, p} = (3(1)11’1%’{1111}@{.@, qt, v}
thig routinely implies that

%nmx{min{(&(])«((l), a}, pre(d)

i |

exists and is 0. _—
Therefrre, by Lemma 4.2, v is in 4.

i : bion from I' int 11 and
Observation 4.2. Suppose that p is a furnctmn from I' into {0, 1}

£ iy in an element of A B(R)(I")* such that % B E(T) exists, Let v =\ pe.
. - - o . Al
Then £ — v is in A B(R)(I") and, cleaily, § = pg, so that, it 'V is in I,

then w(¥) = g B(D)E(T) :g BRI E(T) — %[ 8(1) S BT) am] = % B,
i\ 14

7
v ¥ I

E( ) Iy = v — () =0,
so that %B(I)(i(f) — () :Sﬁ(l)é(l) — \ BV == v(V) (V)

4 1 v

Lunmya 4.4, Assume the hypothesis of Lheorem 1.A.1. wiih a8 }gm;}e;;
o in M, W — range union of « and H in R. Assume {B’Ai}kzl as Hwis g
conclusion of Lemma 4.1. Then, for b =1,...,n, pka ﬁiﬂ(,_/ ? %ﬁ) "
M, (Wu {H}). Purthermore, there is a funclion k from m o {1, “‘1’ 1}
S’M(}lib that if I is in B, then k(1) 1s the only k_' = 1,...,n, such that B, (I)=
=1, so that if k =1, ...,n, then

: I {H} if b s k(1)

SRR A ) s {a(I) it k — k(I),

so that if @ vs maxm or min, then

QB (De(l) + (1 — BINH, . . -, pu(D)a(L) 4- (L — Ba(INH} = Q'{{I{'}a 06(1)}:-
Proof. ¥ k =1,...,n — 1, then, by L}amma 4.3, /B,;fv. Is in My, .
We now consider ». From Theorem 3.1 it follows that «/is in M,

where A = Ay, 7). By Observation 4.2, i :g Bz}, so that from Theorem

3.A.2, 8, «isin M,. Again, by Observation 4.2, since g Bupn = 2, it follows

¢
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that gp,,(l)(p.ﬂ([) — MI)) exists and is 0, so that by Lemma 4.3, g, o is

h
i M, ;. Therefore, by Theorem 3.1, Bua is in M, mn = My,

Now, suppose that k=1, . . - . 16 follows from Theorem 3.A.2 that
froe 4+ (L — B,) is in M, . Suppose that I is in . Tf Bill) =1, then
BlD)a(I) + (1L — BUDNH = ofI); it Bull) = 0, then @y(I)a(I) -|-
+ (1 — By(I))H = {H}. Therefore Broo - (1 — B,)H is in My (W u {H}).

The final assertion of the lemma is almost immediate and we leave
the details to the reader,

We now prove Theorem 4.1, as stated in the introduction.

Proof of Theorem 4.1. We first show that in case 1), b) implieg a).
So assume that 1) and b) ol 1) are true. Clearly, for k = 1, .. <y, 7 18 in
44, 80 that by Theorem 3.1, aisin M, so that by Theorem 3.A.2, flay, .. ota)
is in M,, so that, obviously, « is in A

We next show that in case 2), b) implies a). So assume that 2) and
b) of 2) are true, For “cach J that aviges”, by Theorem 3.A.9. Slogy ooy )
is in My, so that by Theorem 3.3, ais in M, ’

Therefore, in each of cages 1) and 2), b) implies a).

We now show that in each of cases 1) and 2), a) implies b).

First, there is a sequence 1Ba}ios satistying the conclusion of Lemma
4.1., so that for cach IT in R, {ap: -+ (1 — B }i_,, satisfies the conelu-
sion of Lemma 4.4, i

Now suppose that 1) is true. Tiet I7 — supW. Let f denote the func-
tion from R* into R given by

My, m,) = min{a;, ..., x,}.
J is continuous and, if 8 < R, then J(8")=8. If T is in P, then
m{By(Dod ) o (1 —~ B, . .., BuD)(T) |- (1 = Bo(I)H) —
= min{{H}, «l)} — ofl).

Therefore | if 1) is true, then b) implies a). >
Now suppose 2) is true. W.lo.g., assume that W is unbounded

above. Suppose that 0 < ¢. There ig pand H such that p < 0 < o, 7
is in W and .

%L('sw, (93 Hjn)(I) <e.

As Defore, let f denote the function from R™ into R given by
J@y, o, @) = min{ay, .. . s wr}
Again f is con‘uihuous, and, if § < [R, then f(§")'c 8. If I is in I, t‘heﬁ
B D) - (L — BN, -, Bu(D)afT) - (1 — py(I))H} =
= min{{ll}, «I)},
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so that if
Bla, fBya 4 (1 — B, ooy Bue - (1 — RYH))I) = 1,

then «(I) is not a subset of min {o(I), {}}, so that, clearly «(I) ig not a
subset of [p; H], so that

Bla, [p; H(I) = 1.
Therefore
Bloy f(Broe 4 (1 — BH, .., Buo - (1 — BHH)I) < Ble, [p; H])I).

Therefore

SLw(a, fBaa A4 (L — B, .., Buo 4 (1 — BH)) () <

U

< SL(@(a, [p; H]ya)I) <e.

Tor the case in which W is unbounded below, we use ‘“‘max’ instead
of “min’ ; we leave the details to the reader.
Therefore, if 2) is true, then b) implies a).
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