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L. Preliminaries. Tt us consider the following genera multicriterial
optimization problem

(] 1)} j(w) = (fl(‘m%' . '7fm(m)) —= V. max
K subject to e < g

One of the theoretical approaches for gelerating gome nondomina-
ted solutions for the above Problem, which appears repeatedly in the lite-
rature is based on reduction the vectorial optimization Problem (1.1) to
a family of sealar optimization problens. In order to describe this method
let us write

m

A — {7\: gy ydn) 2 he R, M= 1y 0, (0 = 1, ...,m)}.
1

Given ae A let P(3) denote the following broblem

L

(1.2) M(x) = Z Nfd@) — max

subject to ¢ e Q

Let (L) — 2eQ:2 solve P(2) for some 3 eInt A} and Jet
Mp(f, Q) be the set; of all Pareto maximum Points of the vectorial objective
function f on Q, ie. the set of all nondominateg solutions of problem
(1.1).

The following result is well-known (Da, Cunha, Polak, 1967) .
(L) = Mp(f, Q).

%&m:m:mr‘mﬁzﬁtt 1
which allows to generate some nondominated solutions for (1.1) by meang
of the problems P(n), xelntA.

This approach works quite well for the bicriterial cage, In what
follows we shall use the above method for & 8pecial clags of bicriterial
optimization problems. )
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2. A eertain “linear-linear fractional” Dieriterial optimization problem,

-

T,eb us consider the following problem

70— ¢W.g

(2.1) Z% A - V. Inax
7®  oOg |y

subject to Aw = b, ¥>0,

where a, ¢©, o®, ¢® eR*, B, y€R, heR” and A e, ,(R), on the
agsumption that ¢ -z 4y = 0 holds in the feasible set.

This problem was considered by Shyamal Chatterjee and Rabindra-
nath Sen, who gavein [1]an algorithm for generating nondominated solu-
tions based on a simplex procedure. Tn order to obtain the criterion for
optimization, in 1] the authors gave two theorems ([1], Th, 2.1 and
Th. 2.2).

Using the method presented in the first section of our paper let
consider the problem

7@
7 = oM (1 — M)TJE)— — TNAX.
(2.2) %
subject 1o

Az =b, v >0

corresponding to the A = (w, 1 — @) eInt A, Le. o€ 10,11,

In what follows in this section we shall use the notation used in [1].
Let @z be the initial basic feasible solution and let us denote by B the
basic matrix (@w; = B~'b). Here Z — o)« @y, ZP = OF - v+ p and
Z® = ¢ - x5 - v, where o®, ¢@ and ¢ ave the vectors having their com-
ponents as the coefficients associated with the pasic variables in the ob-
jective function of (2.1). Tet consider the following notations

= Blay, Z§) = o -y (1=1,2,3) and 6= min{as, /Y : Yyo=> O}

In [1] the following theorem, for improving the basic feasible solu-
tion wxy is formulated.

91. TaporEM ([1], Th: 2.1) Gien @ basic feasible solution
@p(xg == B~'b) for a programming problem given by (2.2), with the valuc
of the objective funciion for the solution being

o ®p 4 P

Ziyg= ¢ wp + (1 —@)—
ot v

in A but not in B the condition

1 — ) ¢
2.3 YA Vo e s} S L AL ey
(2:3) o o VA ! » 4P

if for any ecolumn &

3 Jaye . .
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holds for 7Z® )
Jor Z® — ¢ > 0 and the condition

(2 — ey It 60 m 1 2£Zgi(zj(3> — o) — Bz (Z o)
J

(2.4) I (257" — (2 — ¢f)2 Bl
L _1 — o  0¥ZP - ePVZ® _ o®
T S ‘ J J ¢”)
[0 (Z((,S))z . O(Z(f’ n c(_s))g <0
holds for Z™ () » '
: ; e <0 and -?j at leas .
is possible X ik L Least one gy > 0 — o .
colummns i n,t(jgogtﬂm a new basic feasible solut'io/wlz &p bfg/ i?’éplclt,(n:ﬁ(‘ ,Z))alz, sy
@ N X e
A Y ay and the new wvalue of the objective fmwti‘/on 7 o tt'he
) /i SA1S-

fies Z > 7 1w
o- Lhwurthermore if the gi )
gy 2 Af the given basic soluti . '
- /{ >tlzo. lution is mot degenerate
In the proof of this
TFiis fher ; 1is theore e i ist
ik Thaatonc o Ol o THil Thieg em there is a mistake. The conclusi
y _ I'ue, as we can gee fr i chston of
s rom the following
4. dirample. Let us consider wi
ider the following problem
Iy= e
1
72)
ok oz U ai a0 — V. max
D) AL zy + @
1 V2

subject to

Ty - @ — 3 ]
we s Lol @yt 2y =3, @y =1, Tyy Xgy g = 0.
e form the super-criterion

7@

Z = O)Z(l) _{__ (1 A (l))
73

where « e 13/5, 2/3[.

t LS. X i
) ( o, ) | B (1’1), corr eSpOHdIDg tO the \ ()I‘beX

j prem— 3 it
D Y=l =0,y =1, gy =0, g, =1, g, — 0

) o g ) y 23 = Y,
1L, Z{) = —1, 7 — L, Z§ =1, ¢ =0, ¢® — _9 1 o
It is clear that zZ® {3 it o

o3 ¢ » 25" — ¢ >0 and the conditi

the] /5‘, 1[.AHowever, for the new b.fs. @, :1 ?(inl)(2é3).holds ko
vertex & = (0, 1, 1) we obtain 2 ’ i

Z <Z, as so
2.3. Remark. In th ’ on 88 © < 10,23
s ¢ . e Same paper g v . s
Th. 9.3) Bub in ihe proct i thil; tlhe(:a another theorem is stated ([1],

Theorem 2.1 ¢ =2 A rem it is us ; ; :

the prolgf 0% 1gnd therefore both these results are no%dviﬁg Gﬁnclugmn of

dona s 1 second theorem ([1], Th. 2.2) the followi - Moreover, in
¢ “The function e following assertion ig

7 = oW | 1 —wc¢?-g
[ 0(3).m+Y
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#0, ¢ -2 4y # 0 is both pseudoconvex and pseuclocc‘)ncaw"e olz]z)b

z)onve}’( set I'c [R"”. But this assertion is in gemeral not true (see [ )

Some aspects concerning such problems we shall review in the nex
section.

3. On a hyperbolie optimization problem. Let consider the following
problem

G subject to

2eQ ={xecR": Az < b}

n m M ([R)

here =, ¢, d, e cR", beR”, A€ o ‘ b |

i eOb,ser’ve ’that th;, problem (2.2) is like the aboverplolj)lem. éhlr_sp ]11)1“:({ )

blem was studied in 1969 by G. Teterev, w]yo gave a theorem ([v (]1, : .J,

l?ich is not valid. The nonvalidity of this theorem \\}7]@3 E}l;ov;eem 37[6].

}z’ﬁrche and Ho Khac Tan ([2], [3]). On the basm‘ of t is ‘fﬁo B is7

th. 1), in 1974 1. Marugceac concluded that the tunction f 1031 (3.4 1s

qlliasié:)nvex on the set O defined in V(i)'li)l‘hon%the assumptio ‘

= R';¢c-x >0 d-ox>0 ([b], . 2). . ‘ |

| QCElIn t‘if:; esam(’s paper [5’], using the conclusmélhﬂ}mlal f is qugiiltci?)lrllv\gz

; algorithm is constructed. In e following »

g]?aflll(;algvz E;ll’la‘? : ix? %ertain supplementary conditions thig results are

valid.

4. A certain “Linear-hyperholie” bicriterial optimizntion bproblll(;gli:
In or(;ér to establish sufficient conditions ‘{101“ f from (3.1) to be q
convex, in 1978 L. Lupsa gave the following

4.1. TuroreM. ([4], ©.10). If Q < E, and the following system
d-z=20
(4.1) ¢z >0
¢-o <0, velR”
18 an inconsistent system, then the function f is quasiconvex on Q.

In what follows let consider the problem

filw) = - w
¢+ p — V.Max,
L4 (201 "t
(4.2) Jo(@) = ¢ w+dm
subject to # e Q = {r cR": 4w < b} < B},

where Bf = {x eR": 6V 2, ¢® -2 > 0 and d - z > 0}.

(4.6)

that x0¢ WD and g9 ¢ M and therefore o

Lod® - (1 — @)@ ] 00 2 ¢ implies that 2° ¢ a7,
proven,

2° € M, and in virtue of (4.6) it follows that 0
this conclusion implies that 2° is a solution for
or (4.4), which represents a contradiction.

|€/‘l

— P_'(u;_eto_ bicriterial oplimization problems i67

Observe that there is a strong connection pet
and the problem (2.1). For generating some non
the above problem we shall use the aproach indie
Observe that the super-criterion

ween the above problem
dominated solutions for
ated in the first section.

Fo=ofi (1 — a)fy, weog
18 a hyperbolic function. In order to adopt the algorithm constructed in
[5], the following result will he useful :
4.2. LeMMa, Lot o, @,

e and d be given wvectors of R™. If the Jfolloa
wing two systems

d' [ H— O
(4.3) T
e . z <0
and
’d’- z =0
{4.4) R LS
e®. <0

are inconsistent systems then for any o e 10,1 the Jollowing sysiem,

d'm = 0

(4.5) e x>0

[oe™ 4 (1 — w)e?]: <0
U an inconsisient system, too.
Lroof. For every w e 10,1 let us put
My = {2 e R”: [weM + 1 — )®) gy 01,
M = {meRr;: 0. 4 << 0} and

M =dwelR*: ¢ . 4 <0},

The following conditions holds for every e 10,1

M, = MYy mu,
Indeed, for any « e 10,1] and a° ¢ R”, from a9 ¢ MD U M ig follows
Vea® > 0and o2 . g0 =0. Then
. Oonsequently, (4.6) is
Now, assume that 29 €IR" is a solution for the system (4.5). Then
€ M or a° e MO, But
one of the systems (4.3)
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4.3. TuEorEM, If Q< EY and the systems (4.3) and (4.4) are
both inconsistent, then for any o € 10,1[ the function B, is quasiconvew on L.

Proof. Tt follows from Theorem 4.1 and TLemma 4.2 if we take
6= we® - (1 — w)e®, e:= (1L — w)e, di=d and fi=F, = of; +
+ (1 — o).

4.4. Remark. If Q< B} and systems (4.3) and (4.4) are both incon-
sistent, we can use the algorithm constructed by T. Marusceac in [5],
for the hyperbolic programming problem

(11— wew
d -z

P(2) = [we® 4 (1 — o) o -+ — max

subject to x e,

This algorithm, based on a simplex procedure congists of two phases.
The problem is first approached by 2 simplex procedure to obtain its
local maximum and then with the help of the cutling plane technique a
global optimum is derived.

By means of problems (4.7), corresponding to any e JO,1[, we
can obtain some nondominated solutions for problem (4.2) as we have
seen in the first section of this paper.
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