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NETS OF POSITIVE LINEAR FUNCTIONALS ON C(X)
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There arc many Korovkin type results concerning the convergence ol a unet of positive
lincar functionals to a Dirac fuentional. The test set is often of the form T U {t?:1e T}where
Tisa given sct of functions. In this note we present some results in this context.

Let X be a compact Hausdorff space and let C(X) be the space of
all real-valued continuous functions on X endowed with the sup-norm.
Denote by M. (X) the set of all probability Radon measures on X. Let
(i) be a net in M (X) and let p e MY (X). Denote

B = {J € 0(X): lim (u(f) — ) = 0}

THEOREM, a) IJ 1s a closed subalgebra of C(X).
b) If lim pi(f) = w(f) for all fe B, then every f e I is constant on

sUPD .
Proof. a) Let ve Mi(X), f, ge 0(X). Then w(f--a): >0 forallac R;
this yields v(f2) > v¥f). It follows that v(f + ag)? > vif - ag) for all
a € B. Therefore

(1) ((f9) — v(f) 9(9))% < (W(f2) — YH))(g?) — v¥(g))
This implies
(2) lim (pe(fg) — pdf) walg)) = 0 for all fe B, g O(X) :

Clearly Me  for all 2 € R and all f e B. Let now f, g ¢ . Then

walf + 9)* — Wi+ 9) = wilf*) — i) 4 wile®) — p39) +
+ 2(pf9) — wlNui(9)).

Using (2) we see that f |- g € . Moreover,
pf) — i) = (Y — w1 +
DT — ) DT+ P — el f2)]
Again by using (2) we infer that f2 ¢ E. Since
fg=(f+9°—f —g3/2
it follows that fg e E for all f, g c E.
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Hence I is a subalgebra of C(.Y) ; it is easy to verify that it is closed.
b) Let fe K. Then f2 e E and thus
B — pAf) = 1w () — ) = 0.
FFor @ e X let us denote o(w) = u(f — f(a))? =

= p(f®) — 2f(@)ulf) + f(2).

Then ¢ e 0(X), ¢ > 0 and p(9) = p(f2) — 20Xf) 4 w(f?) = 0.
It follows that ¢ = 0 on supp p.

Let @y e supp p. Then p(f— flay))? = 0, i.e., f — f(#,) = 0 on supp
w. Thus f is constant on supp p and the proof is finished,

COROLLARY. Suppose that T < C(X) separates X and lm u(t) =
= w(t), im (%) = p2(t) for all t € T. The following statements are equiva-
lent.

(1) im pdf)= u(f) for all fe O(X)
(ii) w 1sa Diracmeasure.

Proof. For ¢ e T'wehave lim (pft2) — u¥(t)) = pi(t) — p¥(1t) = 0,
hence T' = E. By the Stone-Weierstrass theorem it follows that 1§ — 0(X).
(i) — (ii). Using part b) of the above theorem we infer that every f ¢ C(X)

is constant on supp w, hence p is a Dirac measure.

(i) = (i). Thig is a well-known Korovkin type theorem. (It is connected
with the Stone-Weierstrass theorem; see [1], [2] and the references
given there). For the sake of completeness we present a proof.

Suppose that (i) does not hold. Let p be concentrated at z e X.
Thus, for every te 1' we have
(3) bm pt) = #(x) and h'zm u1%) = t3(@).
but there exists a function g € C(X) such that (pg)) is not convergent
LO g(?t. follows that there are an « > 0 and a subnet (u;) of (p,) such that
(4) | usd9) — ¢(2)| > e for all j.

By a compactness argument there exist a subnet (p,) of (p,) and
a ve ML (X) such that

(5) lim p(f) = v(f) for all f e C(X).
k i
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By the above proof that (i) — (ii i )
ol Ll 11 18 A0 anaIre 1ol
concentrated at y € .Y, Then 1i{]'1)p,kfi() )1 o) o oxaC easure. Lot v be
r

. = Uy) for all ¢e 7. On the other
and, by (3), llkm wilt) = t(x). Since T separates X, we see that y = .

Now (5) yields 1i;n wi(g) = g(x), which contradicts (4).

REFERENCES

1. Altomare, I I'ronliéres abstrai
arc, I, straifes el convergence de amilles fil(récs d iniéai
;Z chs (gggl){cs de pa:mch commutalives, Séminaire G. (JlfoquetJIJ\II.Li:aniJg)(Fi”iS;:;F{Siret
. C.a}]i];))niii c\?nn}ee ]QSlTS’ZS’ no. 6, Publ. Math. Univ. Pierre et Maric (‘rim:e I"u'.ié 15;1‘;}7’
20 G s M., Rasa ., Sels of " ic [ [ i i T e
Untv atoaony , L, of parabolic [netions, to appear in AL Sem. Mat, Fis.

Received  18.1.199
e 5.1.1990 Depariment of Mathematies

Polylechnic Institute
15 Iimil Isac
3400 Cluj-Napoca
Romania



